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Abstract
Today, the evaluation of soil quality and crop yield has become a critical issue in meeting the increasing population’s 
food needs. The current study aims to analyse and predict the effect of biogas waste (BW) application on soil 
quality and barley yield. The yield of barley grown in the soil with 0 (B0), 10 (B1), 20 (B2), 30 (B3) and 40 (B4) 
t ha-1 BW applied and the physical, chemical and biological properties of the soil were examined. In determining 
the soil quality index (SQI), the analytic hierarchy process and linear combination technique were used, 27 soil 
indicators in the total data set (TDS) and 10 soil indicators were evaluated separately due to the minimum data set 
(MDS) created with a principal component analysis (PCA). The relationship between SQI values obtained based 
on application and barley yield was estimated by applying general regression equations and Levenberg-Marquardt 
training algorithm in artificial neural networks (ANN). 
The quality of soil, which was the II class, at the 0 t ha-1 (control) BW for both data sets with biogas waste 
application was defined as the III and IV soil quality classes. While the increases in barley crop yield were similar 
to the soil quality index values obtained with the MDS (SQIMDS), the optimum yield was obtained at the 30 t ha-1 
BW; with this application, an increase of 35.62% barley crop yield was achieved compared to the 0 t ha-1 BW. For 
both data sets, the coefficient of determination (R2) by general regression in the yield estimates from the SQI had 
a prediction accuracy of 0.87–0.88. At the same time, the values in ANN were determined as 0.91–0.92. Among 
the estimation methods, the highest R2, low root mean square error (RMSE) – 125.5 kg and Akaike information 
criterion (AIC) – 359.58 were determined by ANN. 
The study concluded that biogas waste application increases soil quality and barley yield. The MDS can be adopted 
successfully in soil quality determination, and the barley crop yield can be predicted with high accuracy from the 
soil quality with ANN. 

Key words: biogas waste, minimum data set, artificial neural networks, soil quality, analytical hierarchical process, 
Akaike information criterion. 

Introduction
In the natural ecosystem cycle, soil, water and 

air quality are crucial for natural resource sustainability. 
Soil quality is a complex indicator that is evaluated as a 
result of the effect of physical, chemical and biological 
parameters according to air and water quality. The soil 
quality, which has a three-phase and complex structure, is a 
dynamic combination of physical, chemical and biological 
processes. Besides, soil quality external affect factors such 
as climate and topography (Bünemann et al., 2018). Soil 
quality, which was first stated to be the yield potential of 
soils under good management, was also defined by Doran 
and Parkin (1994), as the capacity of soil within a natural 
or managed ecosystem to sustain vegetative and animal 
production, increase water and air quality and provide a 
suitable living environment for human health. 

In recent years, the increasing demand and 
pressure of the population for natural resources, 
unconscious and incorrect land use and variations 
of climate conditions have caused land degradation. 
Consequently, soil quality indicators are also widely 
investigated in the field and environmental risk 
assessment studies (Hurni et al., 2015). Evaluating land 
and soil quality together is vital for sustainable agriculture. 
Many studies are using Cornel Soil Health Assessment 
(CSHA) and Soil Management Assessment Framework 
(SMAF) score functions or linear combination technique 
from parametric methods as quantitative methods for 
evaluating soil quality (Mukherjee, Lal, 2014; Şeker 
et al., 2017; Şenol et al., 2019; Dengiz, 2020). In these 
studies, physical, chemical and biological processes of 
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soils are handled together. Again, the most critical factor 
of both approaches is to test the obtained soil quality 
index values through yield values. Still, this may not 
always be possible through field trials or field studies. 

Therefore, estimation modelling is also required. 
With the developing technology in modelling studies 
known as pedotransfer functions, artificial neural networks 
(ANN) are increasing day by day. Tavanti et al. (2019) 
determined the lowest root mean square error (RMSE) 
(0.0142 m3 m-3) and mean absolute percentage error 
(MAPE) (0.0018 m3 m-3) with ANN in their estimates 
of moisture constants. Moreover, Ghorbani et al. (2017) 
predicted field capacity and wilting point best with ANN 
and support vector machine. Today, different machine 
learning algorithms and other estimation methods are 
widely used in estimating soil properties and high 
predictive accuracy can be obtained (Yamaç et al., 2020). 

Although the number of indicators in the data 
set increases the linearity in estimating quality, the cost 
and labour requirements also increase. For this purpose, 
the minimum data set is formed by removing the features 
with a high correlation from the data set. In the study, 
where the selection of 11 quality indicators on average 
was stated by Bünemann et al. (2018), it was suggested 
that at least one feature from the physical, chemical and 
biological indicator groups should be in the data set, while 
evaluating soil quality many criteria should be regarded 
together. Also, determining the weights and the scores of 
the sub-criteria were deemed a more effective approach 
in predicting the desired feature, since the affecting 
standards are not at the same level of importance. Thus, 
one of the multi-criteria decision-making methods – the 
analytic hierarchy process – has been widely applied in 
evaluating the soil and its complex structure (Demirağ 
Turan, Dengiz, 2017). 

In evaluating soil quality, the most investigated 
properties are nutrient elements, organic matter and 
hydraulic properties (Watzinger, 2015). According to 
the literature, there are positive increases in productivity 
parameters with the addition of organic matter. Masto 
et al. (2007) reported that the dehydrogenase and alkaline 
phosphatase activities, water-soluble and microbial 
biomass carbon (C) and nitrogen (N) levels increased 
significantly with the co-application of chemical fertilizers 
and farmyard manure. Ai et al. (2020) stated that soil 
quality improves compost and green manure applications. 
Stable aggregates increase with organic material, slow 
decomposing organic matter forms stable aggregates 
effective in aggregation, and these contain high levels of 
carbon (Nesic et al., 2014). Besides, its positive effect 
on water retention due to its fibrous structure points out 
that organic matter is crucial in evaluating soil quality 
(Alaboz, Öz, 2020). Many organic materials are applied 
as sources of nutrients or soil conditioners resulting from 
decomposition. 

In recent years, it has been possible to get energy 
by producing biogas from organic wastes of plant and 
animal origin and obtaining fertilisers with nutritional 
value in the form of by-products. Biogas waste practices 
improve the physical, chemical and biological properties 
of soils by increasing soil organic matter. The literature 
(Abubaker et al., 2012) has stated that it causes increases 
in plant yield. Still, very few studies validate biogas 
waste effect on soil quality indicators and yield and the 
ANN yield estimation model with field trial experiment. 

The objectives of this study were as follows: 
(i) to examine the physical, chemical and biological soil 
indicators and barley yield changes due to the biogas 
waste application; (ii) to select indicators with minimum 
data set (MDS) and evaluate the effect of applications 
on soil quality with analytic hierarchy process and linear 
combination technique; (iii) to analyse the relationship 
between soil quality and barley yield by artificial neural 
networks (ANN) and general regression. 

Materials and methods
Description of the study area. The experiment 

was conducted in the practice farm of Isparta University 
of Applied Sciences (WGS 1984 UTM Zone 36N 283100-
282921 N and 4190355-4191399 E), Turkey (Figure 1). 
There are orchards, vineyards and nurseries in the area, 
where dry agriculture is generally dominant. The farmland 
is located on a colluvial soil with a flat slope on a depression 
surrounded by high hills and ridges in other directions 
opening to the Isparta plain in the south-east direction. 

Figure 1. Location map of the experimental area 

The general geological structure of the 
experimental area – the hilly regions around are 
composed of cretaceous limestones. The flat area where 
the experiment was established shows a distribution of 
soils formed on quaternary colluvial deposits from the 
quaternary period (Şenol et al., 2020). According to the 
area’s meteorological data for many years, the average 
annual precipitation is 540.1 mm and the average annual 
temperature – 12.3°C; the soil temperature and humidity 
regimes are Mesic and Dry Xeric (Van Wambeke, 2000). 

Application of biogas waste (BW) in the field 
experiment. In the experiment carried out according to 
the randomized block design, BW as organic material 
was obtained from the biogas production facility. During 
the biogas production stage, farmyard manure was used 
and the organic waste material extracted from the final 
product; the separator press with approximately 15% 
moisture was used. BW was applied at rates of 0 (B0), 10 
(B1), 20 (B2), 30 (B3) and 40 (B4) t ha-1 to 3 × 5 m2 plots 
with 5 replications. 

At planting time, the seedbed was prepared 
with a rotary tiller in the experimental area ploughed 
with a plough (Kurt Tarım, Turkey). In the experiment 
established on 19 November, 2019, after the biogas waste 
was mixed to an approximately 0–20 cm depth, two rows 
of barley (Hordeum vulgare L.) cultivar ‘Agriculture-92’ 
were planted with a 6-row automatic piston seeder (Kurt 
Tarım, Turkey). As the basic fertiliser, 100 kg ha-1 N and 
80 kg ha-1 K were applied, and the trial was harvested on 
5 July, 2020. The barley yield was calculated for square 
meter. The organic material content of the biogas waste 
was 46.7%. The biogas waste had a pH value of 7.70, and 
its C to N ratio was 12.1. The P and K contents of the 
material were 0.84% and 0.75%, while the Cu, Zn Mn and 
Fe contents were 15.8, 35, 109 and 859 ppm, respectively. 

Soil sampling and analysis. Before the harvest, 
three parallel disturbed and undisturbed soil samples were 
taken from each application’s repetition and brought to 
the laboratory. Preliminary preparations were carried out 
for soil analysis. The textural fraction distribution of soil 
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samples was determined using the hydrometer method 
(Bouyoucos, 1951). Lime content was determined using 
a Scheibler calcimeter (Burt, 2014), dry bulk density and 
soil porosity were determined by undisturbed sampling 
according to Burt (2014). Electrical conductivity (EC) 
and soil acidity (pH) values and applied material were 
measured in 1:1 soil-water and 1:5 organic material-water 
suspension. Organic matter (OM) content was determined 
by the modified Walkley-Black and dry burning method 
(Burt, 2014). Field capacity and wilting point of the soil 
samples were determined by volume with the help of a 
ceramic table pF set (Soil Moisture Equipment Corp., 
USA). The available water capacity (AWC) was defined as 
the moisture content between field capacity and the wilting 
point (Burt, 2014). Penetration resistance measurements 
were performed with a penetrologger using a cone, 60° 
and a cone-shaped tip with a base area of 1 cm2. Moisture 
corrections in the penetration resistance value were made 
using the correction equation specified by Alaboz and Öz 
(2020). Ca, Mg, K and Na contents were determined by 
extracting with 1 N ammonium acetate (NH4OAc) using 
an atomic absorption spectroscopy device (Burt, 2014), 
total nitrogen (N) – according to the modified Kjeldahl 
method; micronutrients Fe, Mn, Cu and Zn contents 
were determined according to the method of extraction 
with DTPA useful phosphorus according to Carter 
and Gregorich (2007). Aggregation percentages were 
calculated according to Richards (2012). 

From the biological analysis, urease enzyme 
activity was determined according to Tabatabai and 
Bremner (1972), and soil respiration was determined by 
the reaction of barium hydroxide (Ba(OH)2) with CO2 from the soil and the titration of the remaining Ba(OH)2 with hydrochloric acid (HCl) solution (Isermayer, 
1952). In the dehydrogenase group enzyme analysis, the 
spectrophotometrical determination of the colour resulting 
from the conversion of 2-, 3- and 5-triphenyltetrazolium 

chloride (TTC) to triphenyl formazan (TPF) per unit time 
was used (Beyer et al., 1993). 

Determination of soil quality using the standard 
scoring function and analytic hierarchy process (AHP) 
approach. In the experiment, 27 soil indicators were used. 
Since each soil indicator has different units, they were 
converted into unitless form by applying the standard 
scoring function as the first step. Afterward, to determine 
effect levels of soil quality indicators, the indicators were 
weighted with the AHP developed by Saaty (2001). In 
the first step, soil quality indicators were transformed 
into unitless scores between 0.1 and 1.0 to be comparable 
using standard scoring functions (Mukherjee, Lal, 2014). 
In general, three standard scoring functions (SSF) are 
used: “more is better”, “less is better” and “the midpoint is 
optimum” (Tongsiri etal. 2020). The SSF equations for the 
parameters are listed in Table 1. When the change intervals 
of soil quality indicators obtained for the experimental 
area were examined, no feature was found suitable to 
use “midpoint is optimum” function. So, in line with the 
values obtained in the experiment, “less is better” (eq. 1) 
and “more is better” (eq. 2) approaches were used. In the 
“more is better” function, OM, N, P, Ca, Mg, Fe, Cu, Zn 
and Mn contents, field capacity, available water capacity, 
aggregation, CO2, urease, dehydrogenase, clay and soil 
porosity were taken, while in the “less is better” approach 
sand, silt, EC, calcium carbonate (CaCO3), bulk density, 
wilting point, pH, penetration resistance and Na content 
were taken. 

With the AHP method, it is possible to compare 
qualitative and quantitative factors and determine their 
weights and priorities. Numerical values indicating 
their relative importance of soil properties to each other 
were evaluated according to the Saaty (2001) scale: a 
comparison evaluating the severity range from 1 to 9. 
Binary comparison is applied to criteria and sub-criteria 
according to expert opinions and evaluations. 

Table 1. Soil quantitative parameters and standard scoring function (SSF) 

Parameter Function type SSF equation
Sand LB

                                                                                                   

(1)
Silt LB
Electrical conductivity (EC) LB
CaCO3 LB
Bulk density LB
Wilting point LB
Acidity (pH) LB
Penetration resistance LB
Na LB
Organic matter (OM) MB

                                                                                                  
(2)

N, P, K, Ca, Mg MB
Fe, Cu, Zn, Mn MB
Field capacity MB
Available water capacity (AWC) MB
Aggregation MB
Soil respiration (CO2) MB
Urease MB
Dehydrogenase MB
Clay MB
Soil porosity MB

Note. MB – more is better, LB – low is better; L and U are the lower and the upper threshold value, respectively. 

A comparison matrix (n × n dimensions) 
is created between criteria considering the criteria’ 
importance. All entries in this created matrix must have 
positive values: A – binary comparison matrix aij; the 
importance of element i relative to element J (i, J ... n). 
Properties of binary comparison matrix: aji = 1 / aij; aij 
> 0 (i, j = 1, 2, ... n); for the binary comparison to being 
fully consistent: aij = aik ajk (i, j, k = 1, 2, ... n), if consistent 
aij = Wi/WJ, where Wi is priority value for element i, Wj – priority value for element J. 

After the comparison matrix is created, 
the normalization of the matrix is performed. The 
normalization process is performed by dividing the data 
in each cell by the column total. By taking the arithmetic 
mean of the sum of the data in each row in the normalization 
table obtained from binary comparisons, the W column 

vector, called the priority vector, is received. This vector 
expresses the percent weight of the criteria. 

The binary comparison matrix (A) is multiplied 
by the priority vector (W) to obtain the vector D. The 
elements of the D column vector (d1 = a11× w1 + a12× w2 ... a1n×wn) are divided by the elements of the priority vector 
(W) to  obtain the E values. The sum of the Ei values 
is divided by the number of criteria, and its arithmetic 
average is calculated. With this operation, λ the largest 
eigenvalue of the matrix called max is found. The 
eigenvector method is used to measure the consistency in 
comparisons, and the consistency index (CI) is obtained. 

The consistency ratio (CR) value is obtained by 
dividing the consistency index (CI) by the random index 
(RI). The CR value of less than 0.10 indicates that the 
decision-makers’ comparisons are consistent, and a CR 
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                                                                      (7), 

                                                                      (8), 
      

 where Zi is predictive value, Z – observed value, 
n – number of observations, k – number of parameters 
used in the model, RSS – a residual sum of squares. 

Statistical analysis. The principal component 
analysis (PCA) and multiple comparison test (Tukey) 
were determined through statistical software SPSS, 
version 23 (IBM Inc., USA). In the PCA, soil properties 
were standardized, and Kaiser-Meyer-Olkin (KMO) 
and Bartlett sphericity test results were examined. The 
suitability of the data for factor analysis was checked. 
The basic component up to the eigenvalue greater 
than 1 was selected; the minimum data set (MDS) was 
created by examining the correlation matrix (Pearson). 
For estimation with artificial neural networks (ANN), 
package program MATLAB (The MathWorks Inc., USA) 
was applied. 

Barley yield estimation performed by ANN integrated with the soil quality index
modified by biogas waste application

value greater than 0.10 suggests that the comparisons are 
inconsistent or there are calculation errors. In this case, 
the comparisons should be reviewed (Saaty, 2001). 

After the properties weighted by analytic 
hierarchy process (AHP) were standardized with standard 
scoring function (SSF), soil quality index (SQI) values 
were determined using the linear combination technique 
approach (Dengiz, 2020) (eq. 3) and classified in Table 2: 

     
                                                          (3),  
 where SQI is soil quality index for agricultural 
usage, Wi – weighting of parameter i, Xi – sub-criterion 
score of parameter i. The above formula was applied to 
each soil sample. 

Artificial neural networks (ANN) model. 
To evaluate soil quality and crop yield relationships, 
the general regression equation and ANN were used. 
Structures resembling human nerve cells come together 
to form an ANN. In an ANN cell, there are inputs (X1, X2 and Xi), weights (W1, W2 and Wi), addition function, 
activation function and outputs (Y) (Figure 2). 

Usually, a net variable (NET) is defined. NET 
(eq. 4) input value is obtained by multiplying the inputs 
with the weights and bias (C) (Graupe, 2013): 

    
                                                                                     (4). 

NET value is processed with the activation 
function, and the output to be produced by the network 

Table 2. Classes of soil quality index (SQI) 

Class Definition SQI
I very low <0.40
II low 0.40–0.50
III moderate 0.50–0.65
IV high 0.65–0.85
V very high >0.85

Figure 2. Functional structure of artificial neural networks (ANN)   ∑
is determined. The relevant layer is output and given as 
input to the next layer by applying the activation function. 
One of the most used activation functions is the sigmoid 
function (Graupe, 2013). 

In the connection between neurons, information 
is in unidirectional ordered layers from entry to exit. In 
the feed-forward network, nerve cells are treated in layers 
called the input, hidden and output layers (Figure 2). In 
this study, the sigmoid is used as the activation function 
studied with multi-layer feed-forward backpropagation 
networks (eq. 5): 

       
                                                                                     

(5). 

As the training algorithm, Levenberg-Marquardt 
was used; 60% of the data set was used as training, 20% 
as test and 20% as verification. To assess the relationships 
between observed and predicted values, the determination 
coefficient (R2), the root mean square error (RMSE) and 
the Akaike information criterion (AIC) that evaluates the 
likelihood function in the observation data were used 
(Shi et al., 2015; Wang et al., 2015) (eq. 6–8): 

                
(6),       
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Results and discussions
The effect of biogas waste (BW) application on 

soil and barley yield. The effect of the BW application 
on soil properties and yield is given in Table 3. The soil 
contained 36.7% clay, 35.2% silt and 28.1% sand and had 
a clay loam texture. Bulk density decreased depending 
on the organic matter (OM) content. The increase in 
soil porosity with OM application caused significant 
decreases (P < 0.01) in bulk density and penetration 
resistance. Similar changes were found by Alaboz and 
Öz (2020) and Müjdeci et al. (2020). 

While the field capacity at the 0 t ha-1 BW was 
0.28 cm cm-3, an increase of approximately 39% was 
achieved at the 30 and 40 t ha-1 BW. In the wilting point, 
the applications’ effect was similar up to the 40 t ha-1 BW; 

the 40 t ha-1 BW showed a significant change (P < 0.01) 
compared to the other applications. The moisture level 
in field capacity is positively affected by soil porosity, 
and the wilting point often varies depending on the clay 
content and type. Stability of the wilting point until 40 t 
ha-1 BW caused an increase in available water capacity, 
while the rise in wilting point at the 40 t ha-1 BW decreased 
one. Biogas waste application increased the number of 
pores in the soil that allowed water retention. The use of 
water by the plant increased by decreasing the retention 
energy of water with B1, B2 and B3 applications. The 
addition of OM increases the available water capacity at 
higher tensions by increasing the surface area (Gliński 
et al., 2011). When the effect of the applications on the 
aggregation rate was examined, the aggregation rate, 
which was 72.45% at the 0 t ha-1 BW, showed a significant 
increase (P < 0.01) of approximately 4% at the 10 and 

Table 3. Effect of biogas waste application on soil properties and barley yield 

Parameter B0 B1 B2 B3 B4 Parameter B0 B1 B2 B3 B4
Clay % 36.7 N % 0.105 e* 0.123 d 0.141 c 0.162 b 0.172 a
Silt % 35.2 P mg kg-1 4.5 c* 12 b 13 b 31 a 30 a
Sand % 28.1 K mg kg-1 350 362 358 383 369
Bulk density g cm-3 1.46 a* 1.35 b 1.29 c 1.22 d 1.20 d Ca mg kg-1 3900 d* 4170 a 4160 a 4000 c 4070 b
Penetration resistance MPa 1.56 a* 1.37 b 1.30 c 1.28 c 1.22 d Mg mg kg-1 185 192 191 242 256
Soil porosity % 0.54 c* 0.54 c 0.57 b 0.62 a 0.61 a Na mg kg-1 2.37 2.21 2.42 2.37 2.41
Aggregation 72.45 c* 75.38 b 76.35 b 77.45 a 77.32 a Fe mg kg-1 5.21 c* 5.00 d 5.21 c 6.81 b 8.01 a
Field capacity cm3 cm-3 0.28 c* 0.29 bc 0.33 b 0.39 a 0.38 a Cu mg kg-1 7.52 7.50 7.62 7.64 7.64
Wilting point cm3 cm-3 0.18 b 0.18 b 0.19 b 0.19 b 0.23 a Zn mg kg-1 1.24 d* 1.35 c 1.48 b 1.57 a 1.60 a
Available water capacity 
(AWC) cm3 cm-3 0.10 c 0.11 c 0.14 bc 0.20 a 0.15 b Mn mg kg-1 16.45 c* 18.01 b 18.65 b 18.98 b 20.21 a

Acidity (pH) 7.87 7.85 7.87 7.88 7.90 CO2 100 g 
dry soil-1 24 h-1 25.32 c* 32.45 b 35.78 b 45.37 a 45.34 a

Electrical conductivity (EC) 
dS m-1 0.38 d* 0.41 c 0.42 c 0.43 b 0. 44 a Urease N g 

dry soil-1 35.43 c* 39.48 b 38.75 b 43.85 a 43.75 a

CaCO3 % 25.43 25.75 26.89 26.98 27.31
Dehydrogenase 
µg TPF g 
dry soil-1

3.45 3.44 3.78 3.84 3.80

Organic matter (OM) % 1.69 e* 2.03 d 2.47 c 2.89 b 2.97 a Yield kg ha-1 4940 d* 5420 c 5790 b 6700 a 6630 a
Note. Biogas (B) waste: B0 – 0 t ha-1 (control), B1 – 10 t ha-1, B2 – 20 t ha-1, B3 – 30 t ha-1, B4 – 40 t ha-1; * – significant differences 
at p < 0.01 level between values that are not represented by the same letter. 

20 t ha-1 BW and 5% at the 30 and 40 t ha-1 BW. Humic 
substances resulting from the breakdown of OM increase 
aggregation by causing flocculation between molecules 
(Plaster, 2013). 

The salt content of the soil, which was 0.38 dS m-1 
at the 0 t ha-1 BW, increased statistically depending on the 
applications but did not cause salinity problems. Since the 
EC content of the biogas waste was high, the EC content 
of the soil increased. According to Hazelton and Murpy 
(2016), the soils are very calcareous. The applications 
did not have a significant effect on CaCO3 and pH. 
Although these properties are not regular depending on 
the application, they have shown an increasing tendency. 
It was determined that dissolved organic compounds and 
CaCO3 minerals on the surface interact, and the balance 
between solution and solid phase is affected. Besides, it 
is known that the pH level may first increase as a result of 
the organic material decomposition (Plaster, 2013). 

According to FAO (2006) and Hazelton and 
Murpy (2016), the P content of the control soil (B0) 
was determined as “insufficient”, N, K, Mg, Cu, Zn 
and Mn contents were determined as “sufficient”, and 
Fe and Ca contents were determined as “excess”. The 
most significant increase in the effect of biogas waste 
application on macronutrients was determined in P 
content. Phosphorus content, which was determined at an 
insufficient level at the 0 t ha-1 BW, increased to “sufficient-
excess” levels depending on the increase in applications. 
When the CO2 emerging during the decomposition of OM 
dissolves in water, carbonic acid (H2CO3) is formed. The 
H2CO3 created plays a significant role in releasing P in 
calcareous soils. It has been reported that the degradation 
products of OM turn into phospho-humic compounds in 

calcareous-alkaline soils, and thus the availability of P 
increases by becoming independent of the phosphate ions 
with the replacement of humate and phosphate anions 
(Plaster, 2013). Similarly, the Fe content at the 40 t ha-1 
BW in the microelement provided a significant increase 
(P < 0.01) at approximately 53% compared to the 0 t ha-1 
BW. Depending on the applications, no significant changes 
were determined in the K, Mg, Na and Cu contents. The 
elements in question showed an increasing trend due to 
increasing doses in general. 

The type and number of microorganisms 
present in the soil are crucial characteristics evaluated 
as indicators of soil fertility. According to the CO2 output results obtained in the classification made by 
USDA (2020, https://www.nrcs.usda.gov/Internet/ FSE_
DOCUMENTS/nrcs142p2_053267.pdf) in the B0, low 
soil activity (25.32 mg CO2 100 g dry soil-1 24 h-1) was 
determined in the experiment. According to Hofmann 
and Hoffmann (1966), urease activity was determined 
to be low (35.43–43.85 μg g-1 N dry soil); there was an 
increase in the values of biological indicators, depending 
on the applications. The dehydrogenase enzyme, which 
is one of the fundamental indicators of biological activity 
and is responsible for realizing soil respiration, and the 
urease enzyme produced by living cells in the breakdown 
phase of OM and the N cycle, are also crucial. Microbial 
decomposition products facilitate the formation of clay-
organic complexes. Also, the increase in microbial 
activity increases fragmentation and decomposition of 
OM (Ekberli, Dengiz, 2016). 

Assessment of the indicator weighted with 
analytic hierarchy process (AHP) for minimum data 
set (MDS). The results of the PCA was estimated to be 
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four main components with an eigenvalue >1, and the 
variance explained at 81.467% (Table 4). 

There are 27 indicators in the total data set 
(TDS). A MDS was created according to the PCA. After 
PCA, 10 soil indicators were selected in MDS: clay, 
bulk density, penetration resistance, soil porosity, field 
capacity, available water capacity, EC, OM, N, P, K, Mg, 
Fe, Zn and CO2 in PCA-1, Na, pH and dehydrogenase in 

PCA-2, and wilting point in PCA-3. Other soil properties 
(sand, aggregation, CaCO3, Ca, Mn and urease), 
determined among the properties with the high additive 
rate of silt in PCA-4, were not covered in the MDS. In 
the first basic component, 63.480% of the variance was 
defined; others explained 8.240, 5.421 and 4.335 % of 
variance, respectively. 

Table 4. Results of principal component analysis (PCA) for soil indicators of minimum data set (MDS) 

Eigenvalue
Percentage of variance %

Total variance %

PCA-1 PCA-2 PCA-3 PCA-4 Total 
correlation 

values 
20.580 2.918 2.387 2.115
63.480 8.240 5.421 4.335
63.480 71.72 77.141 81.467

Clay −0.769 −0.132 −0.111 0.523 16.89
Silt −0.542 −0.312 −0.239 0.720 16.77
Sand 0.023 0.609 0.516 0.204 6.52
Bulk density −0.805 −0.103 0.149 −0.113 18.40
Penetration resistance −0.807 −0.212 0.213 −0.221 18.75
Soil porosity 0.813 −0.155 0.070 −0.115 20.03
Aggregation 0.542 0.140 −0.335 0.143 18.65
Field capacity 0.736 −0.145 0.019 −0.062 19.57
Wilting point 0.533 0.247 0.725 0.317 19.65
Available water capacity (AWC) 0.816 −0.317 −0.254 −0.262 16.91
Acidity (pH) −0.615 0.709 0.416 0.056 16.54
Electrical conductivity (EC) 0.801 0.310 −0.138 0.074 20.41
CaCO3 0.600 −0.511 0.511 0.212 14.50
Organic matter (OM) 0.789 −0.018 −0.051 0.103 22.50
N 0.799 0.040 0.010 0.110 21.29
P 0.803 0.078 0.027 −0.185 20.57
K 0.815 0.032 −0.246 −0.404 18.18
Ca 0.105 0.512 −0.631 0.503 6.57
Mg 0.821 0.123 0.200 −0.186 19.81
Na 0.401 −0.699 0.400 0.400 10.29
Fe 0.803 0.111 0.439 −0.071 19.79
Cu 0.645 −0.345 0.021 0.202 19.54
Zn 0.823 −0.002 −0.081 0.161 20.62
Mn 0.611 0.234 −0.025 0.216 17.30
Soil respiration (CO2) 0.742 0.112 0.023 0.017 18.98
Urease 0.657 0.215 −0.083 -0.159 15.33
Dehydrogenase 0.613 −0.762 −0.095 0.210 17.68

After determining the characteristics with high 
additive rates in each basic component, correlations 
between soil indicators were analysed. Thus, among the 
features that showed high correlation, the feature that 
highly contributed to the total correlation was selected. It 
was considered that these selected soil quality indicators 
were also commonly used in many other scientific studies 
such as Jiang et al. (2017), Demirağ Turan et al. (2019) 
and Karaca et al. (2021). 

A significant positive correlation (r = 0.884) 
was determined between clay and silt in texture fractions. 
The clay fraction is an effective property of soil quality 
and has high total correlation load. So, the silt indicator 
to be excluded from the data set. A significantly high 
correlation (r = 0.87, 0.85) was determined among the 
physical indicators between bulk density, penetration 
resistance and soil porosity. Among these properties, 
the total correlation was determined in the highest soil 
porosity indicator. Soil porosity is affected as a result 
of changes in bulk density and penetration resistance. 
Hence, among these indicators, soil porosity is included 
in the MDS. The correlation of field capacity with the 
wilting point was determined as 0.87 with 0.676 AWC. 
The correlation between available water capacity and 
wilting point is relatively low (r = 0.337). Available water 
capacity specifications are not included in its data set, 
since they are field capacity and wilting point constants, 
and available water capacity has a high correlation with 
field capacity. Among the physical properties, clay, soil 
porosity and wilting point were chosen as the MDS 
indicators. High correlation coefficients were determined 
between OM and EC, pH and moisture constants. The 
OM, which is a very important indicator for productivity, 
and EC and acidity (pH), which are evaluated in basic 
soil properties, are included in the data set. 

Nitrogen displays a high correlation with P 
and K content among the nutrient element indicators. 
Due to the increased total correlation coefficient, N was 
included in the data set. As the relationship between 
Na and other nutrients is low, N and Na content among 
the macronutrients were included in the data set. As a 
result of high correlations between micronutrients, 
total correlation loads were examined, and the highest 
correlation load was determined in Zn. Accordingly, Zn 
was chosen as the MDS indicator. 

Significant relationships between pH, Na and 
dehydrogenase could not be determined in PCA-2. 
Still, among the biological indicators, high relationships 
between CO2 and dehydrogenase were established. 
The CO2 property had high correlation with biological 
indicators and high total correlation; dehydrogenase 
was eliminated from, and CO2 was included in the data 
set. While wilting point was selected in PCA-3, the 
high relationship of silt determined in PCA-4 with clay 
caused it to be excluded from the data set. As a result of 
the PCA and examination of correlation matrices, clay, 
soil porosity, wilting point, OM, pH, EC, N, Na, Zn and 
CO2 indicators among 27 indicators were determined as 
the properties selected to create a MDS. 

As a result of evaluating soil properties with 
AHP, their weights are given in Table 5. All soil properties 
are indicated as hierarchy A. Firstly, physical, chemical, 
biological and fertility indicators were weighted generally 
(A1, A2, A3 and A4). Then, each group was weighted 
according to the significance of the indicators (hierarchy 
C) it contains. Combine weight was determined by 
proportioning the weight of each soil indicator (Ci), and 
with the general weight of the quality indicator group 
it belongs to (Ai). Thus, the weight of each property 
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Table 5. Contribution weight of soil parameters to soil quality calculated by the analytic hierarchy process (AHP) 

Hierarchy C 
/ indicator

Hierarchy A
Combine weight 

∑ Ai × Ci

A1
physical
0.3103

A2
chemical
0.2659

A3
biological

0.2018

A4
fertility
0.2222

Clay 0.1613* 0.3643** 0.0501* 0.1130**
Silt 0.1121 0.0348
Sand 0.1413 0.0438
Bulk density 0.1003 0.0311
Field capacity 0.0896 0.0278
Wilting point 0.0896 0.3367 0.0278 0.1045
Available water capacity (AWC) 0.0916 0.0284
Aggregation 0.0668 0.0207
Penetration resistance 0.0648 0.0201
Soil porosity 0.0826 0.2290 0.0256 0.0928
Organic matter (OM) 0.5536* 0.5035** 0.1472 0.1339
Electrical conductivity (EC) 0.2223 0.2523 0.0591 0.0671
Acidity (pH) 0.1472 0.2442 0.0391 0.0649
CaCO3 0.0769 0.0204
Soil respiration (CO2) 0.4052* 1.00** 0.0818 0.2018
Urease 0.3064 0.0618
Dehydrogenase 0.2884 0.0582
N 0.2601* 0.4680** 0.0578 0.1039
P 0.2009 0.0446
K 0.1629 0.0362
Ca 0.1029 0.0229
Mg 0.0816 0.0181
Na 0.0584 0.2780 0.0130 0.0617
Mn 0.0467 0.0104
Fe 0.0361 0.0080
Cu 0.0264 0.0059
Zn 0.0240 0.2540 0.0053 0.0564

Σ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
* – weighting values in the first column for total data set (TDS), ** – weighting values in the second column for minimum data set 
(MDS); Ai – A1, A2, A3, A4, Ci – weight indicators 

was determined within the indicator group (physical, 
chemical, biological and fertility) it belongs to. 
 The highest value (0.3103) was determined for 
physical parameters (hierarchy A1), while the lowest value 
(0.2018) was found for soil biological (hierarchy A3) properties. The highest contribution from the indicators 
in each hierarchy A1, A2, A3 and A4 was determined as 
clay percentage (0.1613), OM (0.5536), CO2 (0.4052) 
and N (0.2601), respectively. 

Although the chemical properties and nutrient 
contents come to mind first in soil fertility and quality, 
the absence of soil’s physical structure at an optimum 
level in terms of chemical content significantly affects 
productivity and plant growth. Among the physical 
indicators, the highest weight was evaluated for the 
texture fractions. The effect of sand, silt and clay on the 
water and nutrient retention properties significantly affect 
productivity. The high rate of these features’ contribution 
was compatible with other studies (Şenol et al., 2019). 
After the texture fractions, the volume weight indicator 
was weighted higher than the other properties. The 
adverse effect of water retention and infiltration due to 
the increase of this feature, which is an indicator of both 
compression and soil porosity, reveal that it is a feature 
that contributes significantly to yield and quality. 

Among the chemical indicators, the rate of 
contribution of organic material was determined as 
the highest. Many studies (Olorunfemi et al., 2018; 
Volungevičius et al., 2019; Alaboz, Öz, 2020) have shown 
that the decomposition of OM positively affects physical 
conditions and chemical properties of soil. Again, among 
biological indicators, one of the fundamental biological 
activity indicators soil respiration (CO2) has the highest 
additive rate (weight 1.00). The contribution rates of 
macronutrients in nutrients are at higher levels than 
micronutrients. The increased need of the plant and its 
deficiency cause significant changes in productivity 
and quality parameters, and it is the reason for the 
determined high contribution rate. In the weighting of 
the 10 indicators selected by creating a MDS, one of the 
chemical indicators clay (0.3643), OM (0.5035) and N 
(0.4680) content among the nutrients were determined 

to have the highest additive ratio. In determining the 
contribution rates, evaluations were made considering 
the priorities determined for the entire data set. 

The SQI values and product yields obtained 
for both data sets due to evaluating the scores obtained 
from AHP results and standard scoring functions with the 
linear combination technique are indicated in Table 6. 

The SQITDS, SQIMDS and the yield values 
showed a significant change (P < 0.01) depending on 
the biogas waste application. SQI values obtained with 
both data sets are classified as “low” in II class quality 
in B0 (control) soil. In contrast, 10 and 20 t ha-1 BW and 
“moderate” 30 and 40 t ha-1 BW soils are classified as 
IV class “high”. The highest value in SQITDS obtained by 
using 27 indicators was at the 40 t ha-1 BW, while with 
SQIMDS it was determined at 30 t ha-1 BW. In addition, 30 
and 40 t ha-1 BW treatments were statistically similar. 

For both data sets, soil quality compared to 
0 t ha-1 BW showed an increase of approximately 10–15, 
30–35, 45–50 and 50–60 %, respectively, depending on 
the applications. When the plant yield was examined, 
barley yield, which was 4940 kg ha-1 at the 0 t ha-1 BW, 
showed a significant increase (P < 0.01) depending on 
the biogas waste application. Compared to the 0 t ha-1 
BW, depending on the increase at B1, B2, B3 and B4 
applications, an increase in yield of 9.71, 17.20, 35.62 
and 34.21 %, respectively, was determined. Abubaker 
et al. (2012) reported that an increase in the wheat yield 
was determined compared to the 0 t ha-1 BW. During the 
breakdown of organic fertiliser, N present in the soil is 
consumed by microorganisms. Therefore, N fertilisers 
together with organic materials will contribute to the 
plants’ benefit more effectively from fertilisers. 

In this study, basic fertilisation was applied to all 
applications together with the biogas waste application. 
No significant differences were determined between 30 
and 40 t ha-1 BW in the effect of the applications on yield. 
While significant differences were determined between 
30 and 40 t ha-1 BW in SQITDS, there was no substantial 
change with SQIMDS depending on the application of 
30 and 40 t ha-1 BW. With SQIMDS productivity showed 
statistically similar changes depending on applications. 
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Table 6. Effect of biogas waste application on soil quality and barley yield 

SQITDS SQIMDS
Yield (Y) 

kg ha-1 Prediction equation R2** R2*** RMSE AIC
B0 0.468 e* 0.473 D* 4940 d*
B1 0.519 d 0.547 C 5420 c YSQITDS = 2289.71 + 5953.14 SQITDS 0.80 0.87 311.3 516.30
B2 0.6345 c 0.625 B 5790 b
B3 0.692 b 0.705 A 6700 a YSQIMDS = 1821.62 + 6773.06 SQIMDS 0.90 0.88 241.2 444.53
B4 0.711 a 0.703 A 6630 a

Note. SQITDS – soil quality index, obtained with the total data set, SQIMDS – obtained with the minimum data set; * – differences 
significant  at p < 0.01 level between values that are not represented by the same letter; ** – obtained R2 when creating stage of model, 
*** – obtained R2 when testing stage of model; RMSE – root mean square error; AIC – Akaike information criterion. 

General regression equations for estimating 
productivity depending on the difference in soil quality 
are presented in Table 6. With the general regression 
method, R2 in the yield estimation equations from 
SQITDS and SQIMDS were determined at 0.80 and 0.90 
levels, respectively. The highest predictive accuracy was 
obtained with SQIMDS. In the stage of testing the model, the 
R2s obtained are relatively close to each other (0.87 and 
0.88), while the lowest RMSE and AIC values (241.2 kg 
and 444.53) were obtained in the model with SQIMDS. 
Although the R2s are similar in the models, the low levels 
of RMSE and AIC is an indication that the validity of the 
model, in which SQIMDS is used as an independent variable 
is higher. The high level of R2 among the parameters used 
in the validation of the models and the low levels of other 
evaluation criteria is seen as an indicator of the success 
of the model (Alaboz et al., 2021). 

The AIC value cannot be directly interpreted. 
For a model, it does not provide information about 
whether – the model-data fit is good or bad. It offers the 
opportunity to compare, which of the compared models 
is more suitable for the data. It is known that a data 
set with a low AIC value is more compatible with the 
model (Brewer et al., 2016). By analysing the regression 
equations obtained, it was revealed that the estimation of 
the value in the yield of the crop could be successfully 
realized with the soil properties determined in the MDS 
and the SQI. Except for general regression equations, R 
values for yield estimation results with artificial neural 
networks (ANN) with 1:10:1 network architecture are 
shown in Figure 3. 

While R2 values obtained from training, 
validation and testing in yield estimation from SQITDS 
(YSQITDS) were 0.92, 0.95 and 0.83, the said values were 

Figure 3. Barley yield (Y) prediction with artificial neural networks (ANN) 
YSQITDS 

YSQIMDS

determined as 0.90, 0.95 and 0.96 in YSQIMDS, respectively. 
In general, YSQITDS can be predicted with 91%, and YSQIMDS 
– with 92% accuracy in estimation with ANN. The R’s 
obtained in training and validation stages in both data sets 
were found to be quite similar to each other. However, 
the existence of deviations from the linear curve in the 
estimation of YSQITDS during the test phase caused the R 
to be lower. Besides, while RMSE and AIC values were 
227.8 kg and 471.49 for YSQITDS, the said values were 125.5 
kg and 359.58 for YSQIMDS, respectively. The lowest RMSE 
and AIC values were determined in YSQIMDS similar to R2. 
Compared to the general regression results, the yield was 
estimated with higher accuracy with ANN in the models’ 
evaluation and test phase. The RMSE value is the deviating 
mean error of the predicted value, while AIC shows the 
overall probability of error for the entire data set. 

The OM with colloid property positively affects 
soil quality, as it forms clay-humus complexes, increases 
available water capacity, provides an energy source to 
microorganisms and reveals nutrients that plants can 
benefit from decomposition (Plaster, 2013). As shown in 
this study, an expected result is increasing soil quality 
together with the soil structure’s organic material, which 

covers the whole of physical, chemical and biological 
processes. However, it is a critical approach to determine 
and estimate how this affects crop yield and validate it 
with field trials. This study also revealed that the MDS 
methods could be used successfully in soil quality studies 
and exhibit very similar results to the entire data set. 
Şeker et al. (2017) used different scoring functions to 
predict soil quality by creating a MDS and stated that 
PCA is a suitable quality evaluation method. 

Conclusion 
This study investigated the effect of different 

amounts of biogas waste (BW) application on soil quality 
and crop yield. As a result of evaluating the minimum 
data set (MDS) formed with 27 physical, chemical and 
biological soil indicators and 10 soil indicators selected 
by principal component analysis (PCA), the yield values 
were associated with the soil quality index (SQI). The 
productivity estimates were made from a SQI with 
multiple linear regression and artificial neural networks 
(ANN). Indicators in the MDS were determined as clay, 
soil porosity, wilting point, organic matter (OM), soil 
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acidity (pH), electrical conductivity (EC) and N, Na, Zn 
and CO2 content. At the 0 t ha-1 BW, when soil quality was 
determined as “low” (II class), soils quality was classified 
as “moderate” and “high” (III and IV class). As a result of 
the experiment, the optimum yield value (6700 kg ha-1) 
was obtained at the 30 t ha-1 BW. The results obtained with 
SQIMDS in two data sets were found to be similar in yield. 

The results of the experiment concluded that 
soil quality evaluation could be successfully estimated by 
creating a MDS. The yield with ANN was estimated with 
higher coefficient of determination (R2) (0.92) and lower 
root mean square error (RMSE) (125.5 kg) and Akaike 
information criterion (AIC) (359.58) values than the 
general regression equation. When assessing soil quality 
studies, it was found that machine learning algorithms can 
be learned using the necessary algorithms and formulations 
from each data given in the computer environment instead 
of linear equations. Machine learning algorithms can be 
used to reach the decision-making level. 

This study demonstrated that barley yield can 
be successfully estimated from the soil quality index 
determined by creating a minimum data set (SQIMDS). While investigating the effect of organic material on 
soil or yield in many studies, it has been determined 
that the organic material applied in this experiment can 
increase the soil quality by 10–55% depending on the 
change in application doses. This increase will lead to an 
improvement in product yield by approximately 10–35%. 
It has been estimated with high accuracy with change 
estimation models. It is thought that with the forecasting 
models created the producers will significantly reduce 
the workforce and provide economic income. 

It is suggested that future studies should evaluate 
the obtained estimation models and the indicators selected 
in the MDS with different organic materials for soils with 
similar ecosystems. As a result, biogas production and 
use are a promising application to reduce humanity’s 
negative impacts on the environment and the use of 
fossil fuels. Researchers should consider the potential for 
significant unused biogas production waste and increase 
research into the use of biogas. 
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Miežių derliaus panaudojus biodujų gamybos atliekas 
vertinimas, taikant dirbtinių neuroninių tinklų metodą, 
integruotą su dirvožemio kokybės indeksu  
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Santrauka
Siekiant patenkinti didėjantį maisto poreikį, itin svarbu įvertinti dirvožemio kokybę ir pasėlių derlingumą. Tyrimo 
metu analizuota ir prognozuota biodujų gamybos atliekų įtaka dirvožemio kokybei ir augalų derlingumui. Tirtas 
miežių, augintų dirvožemyje, kuriame buvo panaudota 0 (B0), 10 (B1), 20 (B2), 30 (B3) ir 40 (B4) t ha-1 biodujų 
gamybos atliekų, derlingumas ir dirvožemio fizikinės, cheminės bei biologinės savybės. Siekiant nustatyti 
dirvožemio kokybės indeksą, taikytas analitinis hierarchijos procesas ir tiesinio derinio metodas; 27 dirvožemio 
rodikliai ir 10 kitų rodiklių buvo vertinti atskirai pagal minimalų duomenų rinkinį, sukurtą taikant pagrindinių 
komponenčių analizę (PCA). Dirvožemio kokybės indekso reikšmių ir miežių derlingumo ryšys įvertintas taikant 
dirbtinių neuroninių tinklų (ANN) metodą ir bendrąsias regresijos lygtis bei Levenbergo-Marquardto algoritmus. 
Dirvožemio kokybė, kuri buvo II klasės, panaudojus 0 t ha-1 (kontrolinis variantas) biodujų gamybos atliekų taikant 
abu duomenų rinkinius buvo apibūdinta kaip III ir IV kokybės klasės. Nors miežių derlingumo padidėjimas buvo 
susijęs su dirvožemio kokybės indekso vertėmis, gautomis taikant dirvožemio kokybės indekso minimalų duomenų 
rinkinį, optimalus derlingumas gautas panaudojus 30 t ha-1 biodujų gamybos atliekų – jis padidėjo 35,62 %, palyginti 
su 0 t ha-1 biodujų gamybos atliekų. 
Abiejų duomenų rinkinių miežių derlingumo įvertinimo pagal dirvožemio kokybės indeksą determinacijos 
koeficientas (R2) taikant bendrąją regresiją buvo 0,87–0,88 prognozavimo tikslumo. Taikant ANN metodą nustatytos 
0,91–0,92 reikšmės. Tarp vertinimo metodų didžiausias R2, maža vidutinė kvadratinė paklaida (RMSE) (125,5 kg) 
ir Akaikės informacinis kriterijus (AIC) (359,58) nustatyti taikant ANN. 
Atlikus eksperimentą padaryta išvada, kad biodujų gamybos atliekų panaudojimas gerina dirvožemio kokybę ir 
didina augalų derlingumą. Minimalų duomenų rinkinį galima sėkmingai pritaikyti dirvožemio kokybei nustatyti, o 
taikant ANN, pagal dirvožemio kokybę galima tiksliai prognozuoti augalų derlingumą. 

Reikšminiai žodžiai: Akaikės informacinis kriterijus, analitinis hierarchinis procesas, biodujų gamybos atliekos, 
dirbtinių neuronų tinklai, dirvožemio kokybė, minimalus duomenų rinkinys. 
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