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Abstract 
Destructive methods for crop nutrition estimation are accurate and standardized but costly and limited by spatial 
scale. Non-destructive techniques such as the use of digital imaging provide fast and reliable results in situ; however, 
there is limited information on these non-destructive techniques in leafy vegetable crops. During the study it was 
estimated the concentration of nitrogen (N) and chlorophyll (Chl) in romaine lettuce using spectral indices derived 
from the RGB (red, green and blue) digital images. The lettuce crop was grown in plastic tunnels and irrigated 
with five N levels: 0, 4, 8, 12, and 16 mEq L-1 NO3-N (corresponding to 0, 248, 496 and 744 mg L-1, respectively) 
based on a modified Steiner solution. The treatment of 16 mEq L-1 NO3-N showed the highest growth at 42 days 
after transplanting (DAT). Digital images of the plants were acquired weekly with a RGB camera and processed to 
obtain scale mosaics and twelve spectral vegetation indices. Correlation analysis of the spectral indices indicated 
that normalized green-red difference index (NGRDI), excess green (ExG) and green channel (g) indices showed 
a positive linear correlation with the concentration of N (r > 0.93) and Chl (r > 0.93). Besides, an exponential 
correlation with leaf area (r > 0.86) was founded, which was stronger in the last 21 DAT due to the acceleration 
in leaf growth during the vegetative stage of the crop. These results show that RGB digital images are a low cost, 
non-destructive, reliable and accurate method to estimate N and Chl concentration and leaf area in romaine lettuce 
during production. Therefore, this technique could be an affordable alternative that combined with portable meters 
(i.e. SPAD) provides real-time monitoring of the nutritional status of the lettuce crop, especially in crop factories. 

Key words: Lactuca sativa var. longifolia, leaf area, non-destructive techniques, nitrogen, chlorophyll, spectral 
index. 

Introduction
Chlorophyll (Chl) and nitrogen (N) are essential 

components of plants because of their role in protein 
production and photosynthesis. An excess or deficiency 
of these can cause toxicity or low yield (Taiz et al., 2014). 
Precise assessment and evaluation of the nutritional 
status of the crop in situ and at different time scales is 
required to optimize the use of fertilizers and reduce 
costs (Muñoz-Huerta et al., 2013). 

Nitrogen concentration in plants is usually 
determined by two approaches – the destructive or 
non-destructive methods. Destructive methods such 

as Kjeldahl and Dumas are based on tissue analysis 
and although they are accurate and standardized, they 
are often limited by the size of the plots, high cost and 
efforts required for sampling (Paz Pellat et al., 2015; 
Baresel et al., 2017). Non-destructive methods allow for 
remote information collection in less time and do not 
require highly specialized personnel (Vollmann et al., 
2011). Besides, measurements may be applied frequently 
and repeatedly on the same plant; thus allowing the 
monitoring of leaf area and crop N status for efficiently 
adjusting fertilization rates throughout the growing 
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season (Sandmann et al., 2013). These methods use the 
relationship of reflectance / transmittance properties of 
some leaf pigments such as Chl and polyphenols with 
their chemical characteristics (Parks et al., 2012). 

It is well known that changes in plant spectral 
characteristics are closely related to changes in nutrient 
concentration in the visible (~550 nm) and near-infrared 
(~750 nm) regions (Muñoz-Huerta et al., 2013). If they 
are combined as spectral indices, it is possible to obtain 
functional relations that estimate the concentration of 
N and Chl (Cammarano et al., 2014). Remote sensing 
data of crops are acquired at leaf level from Chl meters 
(e.g., SPAD) or at canopy level from reflectance sensors 
(e.g., digital cameras). In the first case, the approach is 
the point sampling with a limited spatial scale, while in 
the second, it allows monitoring of spatial and temporal 
variability (Muñoz-Huerta et al., 2013). 

Using digital cameras and image processing 
(e.g., visible spectral indices) is less expensive than other 
techniques (Elsayed et al., 2018) and have been reported to 
be a powerful and low-cost tool in assessing leaf area and 
nutrient status, especially in field crops (Liu et al., 2018; 
Prey et al., 2018; Zheng et al., 2018). In horticulture, the 
processing images have been used to estimate the N and 
Chl concentration in tomato (Mercado-Luna et al., 2010), 
potato (Yadav et al., 2010), pepper (Yuzhu, 2011) and 
sweet pepper (Horgan et al., 2015) seedlings, but there 
are few studies in leafy vegetables (Jung et al., 2015; 
Mao et al., 2015). 

The advantages of using non-destructive optical 
methods have been widely studied in field crops (Elsayed 
et al., 2018). Furthermore, although studies in closed 
environment systems are few, they show promising 
results that have allowed, according to Jung et al. 
(2015), quick and successful estimation of the N and 
Chl concentration in lettuce. Therefore, these methods 
could be incorporated into high-tech closed production 
systems for the measurement of nutritional status in less 
time, allowing the necessary adjustments in fertilization 
schemes to optimize resources, reduction in production 
costs and increase in yields (Gruda et al., 2019). In 
the countries such as Mexico, lettuce production in 
greenhouses is a continuously growing area that could 
benefit from a precise diagnosis and monitoring system 
of the nutritional status of N with high spatio-temporal 
precision, considering that N is the most limiting nutrient 
to the yield (Zhou et al., 2020). 

This paper explores the possibility of estimating 
the N and Chl concentration and leaf area of romaine 
lettuce using a non-destructive method based on digital 
images from a visible RGB camera and spectral indices. 
It could be used as a practical and low-cost alternative 
to traditional destructive methods and providing 
accurate information with higher spatial resolution than 
measurements with proximal sensors such as SPAD, 
which could be useful for application in the greenhouse 
vegetable production industry. 

Materials and methods
Cultural conditions and crop management. This 

experiment was conducted from April to May of 2018 in 
high tunnels, at the Faculty of the Agricultural Sciences 
(18°58′51″ N, 99°13′74 55″ W, alt. 1,866 m) in the 
Autonomous University of the State of Morelos, Mexico. 
Air temperature, relative humidity and light intensity 
were recorded every 5 minutes with a Hobo® datalogger 

U12‐012 (Onset Computer Co., USA) throughout the 
experiment. The average values of temperature, relative 
humidity and light intensity were 26°C, 45% and 
518 µmol m-2 s-1, respectively. 

Romaine lettuce (Lactuca sativa var. longifolia) 
cultivar ‘Green Star’ (Johnny’s Seeds, USA) was sown 
on 13 March 2018, in 200-cavity polystyrene trays with 
commercial BM2 Berger® substrate. After 30 days, 
lettuce seedlings were transplanted into 10 L polyethylene 
bags containing volcanic rock (locally called tezontle, 
with 1 to 7 mm grain size) as substrate. The plants were 
watered daily with 0.5 L (first 21 days) and 1.5 L (last 
21 days) of a Steiner (1984) nutrient solution, modified 
to supply five nitrate nitrogen (N) levels: 0, 4, 8, 12 and 
16 mEq L-1 NO3-N (corresponding to 0, 248, 496, 744 
and 992 mg L-1 NO3-N, respectively), as recommended 
by Mercado-Luna et al. (2010). The chemical composition 
of the original Steiner nutrient solution was: 1.062 
Ca(NO3)2 (calcium nitrate), 303 KNO3 (potassium nitrate), 
492 MgSO4 (magnesium sulphate), 261 K2SO4 (potassium 
sulphate) and 136 KH2PO4 (monopotassium phosphate), 
in mg L-1. Macronutrients were supplied from soluble 
fertilizers depending on the treatments. When necessary, 
calcium sulphate (272.3 mg L-1 CaSO4) and calcium 
chloride (55.5 mg L-1 CaCl2) were added to maintain 
a balance of 20 mEq L-1 anions-cations in the nutrient 
solutions. The micronutrients were applied through 
a commercial chelate mixture Ultrasol Micro Mix 
(SQM, Chile), in a dose of 80 g m-3 of nutrient solution. 
To calculate that dose, the supply of 3 mg L-1 Fe was 
considered. The commercial mixture of micronutrients 
contained the following concentrations in percentage: 
Fe (7.5), Mn (3.7), B (0.4), Zn (0.6), Cu (0.3) and Mo 
(0.2). After preparing the nutrient solutions, the pH was 
adjusted between 5.6 and 6.0 with H2SO4 (sulfuric acid). 
Plants were watered to provide a 15% to 20% leachate 
fraction to prevent salt accumulation. 

Experimental design and reference data. A 
completely randomized experimental design with 180 
pots in total (36 pots per treatment) distributed in five 
N treatments: 0, 4, 8, 12 and 16 mEq L-1 NO3-N, was 
used. Sampling was done weekly from 7 to 42 days 
after transplantation (DAT), for analysis, 6 pots of each 
treatment with one plant per pot as the experimental unit 
were used. The leaf area of each plant in cm2 was measured 
with a portable area meter LI-3100 (LI-COR Biosciences, 
USA). Chlorophyll concentration (mg g-1) was estimated 
from the 18 recently matured (fully expanded) leaves by 
treatment (3 leaves per plant) with the spectrophotometric 
method described by Mackinney (1941) and Wettstein 
(1957). Leaves used to measure leaf area were dried in 
a forced-air oven at 70 °C temperature for 72 h and used 
to determine the total N by the micro-Kjeldahl method 
(Kalra, 1997). 

Image acquisition and processing. Coded 
targets were placed as ground control points (GCPs) 
at a distance of 45 by 45 cm. The digital images 
were acquired using RGB camera WB250F 16 Mpx 
(Samsung) mounted on a goniometer (Sandmeier, 2000) 
in an inclination range of 15° to 165° every 25°, taking 
at least 50 pictures in each session with a minimum 70% 
overlap. A photogrammetric restitution process using 
software Agisoft Photoscan, version 1.2 (Agisoft LLC, 
Russia) was performed according to Grenzdörffer (2014) 
to generate scaled ortho-mosaics and three-dimensional 
digital models (Fig. 1). 
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Spectral indices calculation and classification 
images. Twelve spectral vegetation indices based on the 
three RGB (red, green and blue) visible region bands 
(Table 1) were calculated from the orthomosaics through 
a script in the statistical software R, version 3.5.0 (R Core 
Team, 2019). 

Each spectral vegetation index image was 
subjected to a supervised classification process using 
the maximum likelihood method to separate the pixels 
corresponding to the lettuce crop, obtaining images 
classified with three classes: leaf area, substrate and 
soil. The pixel values of the lettuce crop in the classified 

Figure 1. The process to generate scaled orthomosaic images and 3D models

Table 1. Spectral indices calculated from the RGB (red, green and blue) digital images 

Index name Application Equation References
1. Normalized green-red difference index 
(NGRDI) biomass, N, phenology (G – R)/(G + R) Jannoura et al., 2015 

2. Normalized difference index (NDI) N, Chl (R – G)/(R + G + 0.01)
Lee, Lee, 20133. Intensity (INT) colour, canopy (R + G + B)/3

4. Saturation (SAT)  1 – (3 × R × G × B)
5. Excess green index (ExG) segmentation, Chl, N ((2 × G) – (R + B))/(R + G + B)

Baresel et al., 2017

6. Channel index R (r)

greenness, Chl, N

R/(R + G + B)
7. Channel index G (g) G/(R + G + B)
8. Channel index B (b) B/(R + G + B)
9. Binary channel index (rb) R/B
10. Binary channel index (rg) R/G
11. Binary channel index (bg) B/G
12. Triangular green index (TGI) Chl G – (0.39 × R) – (0.61 × B) Hunt et al., 2013

Spectral band regions: R – red, 650–700 nm, G – green, 500–550 nm, B – blue, 450–500 nm 

images were compared with the reference data (N, Chl 
and leaf area) using a simple correlation coefficients 
matrix, as reported by Chung et al. (2017). Therefore, 
those spectral indices that are statistically different and 
have the highest coefficient of correlation (r) and the 
lowest root-mean-square error (RMSE) were identified 
and selected (Fig. 2). 

Statistical analysis. Analysis of variance and 
Tukey’s test for pairwise comparison was performed 
using the statistical software SAS, version 9.1 (SAS 
Institute, USA) with a one-way factor (N level) and 
statistical significance at P ≤ 0.01. Arithmetic mean ( ), 
standard error (SE), coefficient of variation (CV) and the 

least significant difference (LSD) were calculated. The 
simple linear regression model in the statistical software 
SigmaPlot, version 12 (SyStat Software Inc., USA) was 
used to assess the correlation between spectral indices 
and reference data values. 

Results and discussion
Crop response to nitrogen (N) levels. At 

42 DAT, the treatment of 16 mEq L-1 NO3-N had the 
maximum values (statistically significant difference) of 
Chl, N concentration and leaf area compared to the rest 
of the treatments (Table 2). 
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There was a positive relationship between 
the N concentration of the nutrient solution and the N 
concentration in the plant tissue. This trend was reported 
by Zandvakili et al. (2019) in four cultivars of lettuce and 
by Fallovo et al. (2009) in lettuce ‘Green Salad Bowl’ 
crop. Similarly, there was a positive relationship between 
the concentration of N applied versus the concentration of 
Chl and leaf area. These same trends were reported for Chl 
in lettuce ‘Parris Island’ (Konstantopoulou et al., 2012). 
Nitrogen is the most important nutrient for leafy vegetables, 
especially at the end of the vegetative stage, which in 
lettuce coincides with its harvest. As a yield component 
of crop lettuce, leaf area was also positively influenced by 
the concentration of N in the nutrient solution. Besides, 
similar results have been reported in rocket salad (Eruca 
vesicaria L.) by Santamaria et al. (2002). 

Correlation analysis between spectral indices 
values and reference data. The comparison between 
indices showed that NGRDI, NDI and TGI have a strong 
correlation between them, likewise INT and SAT. In our 
study, a moderate correlation (r < 0.74) between NGRDI 
with R, G and B was found, and these results agree with 
those obtained in tomato by Ali et al. (2013), who had 
correlation coefficients between 0.48 and 0.59. The rest 
of the spectral indices had none or weak correlation 
between themselves (Table 3). 

Strong and significant correlations (r > 0.80) 
were found between NGRDI, NDI, ExG and g indices 
and reference data (N, Chl and LA). These indices were 
developed initially to detect the green parts of the plants, 
so they are known as greenness indices. Later on, given 
their ability to highlight the spectral characteristics of the 
green and red bands, they were used as an indicator of 
the quantity and quality of the photosynthetic material of 
the plants (Rasmussen et al., 2016), so in leafy vegetables 
such as lettuce could be an indicator of Chl, leaf area 
and biomass. In lettuce crop, Jung et al. (2015) reported 
that the g index had the highest correlation for leaf area 
estimation (r = 0.93). The results of our experiment are 
similar to those reported by Xue and Yang (2008), where 
NGRDI and NDI could be used for the calculation of N 
concentration in the vegetative stage of rice (r = 0.95). It 
allows using these indices for the estimation of leaf area 

Figure 2. The process for spectral analysis of scaled 
orthomosaic images

Table 2. Response to different NO3-N levels at 42 days 
after transplanting (DAT) in romaine lettuce 

Treatment 
mEq L-1 
NO3-N

Chl 
mg g-1 FW 

N 
% DW

leaf area
cm2

0 0.387 b 2.48 b 49.3 d
4 0.396 b 2.51 b 51.0 cd
8 0.402 b 2.54 b 53.9 c
12 0.411 b 2.75 b 65.6 b
16 0.453 a 3.76 a 73.1 a

CV 0.067 0.085 0.070
LSD 0.038 0.906 4.437

Note. FW – fresh weight, DW – dry weight; letters between 
columns indicate statistical difference (P ≤ 0.01). 

Table 3. Correlation matrix between spectral indices and reference data values 

 NGRDI  

Spectral 
indices 

from the 
RGB digital 

images

NGRDI 1 NDI  
NDI 0.95 1 INT  
INT 0.03 −0.04 1 SAT  
SAT −0.17 −0.09 0.89 1 ExG  
ExG 0.49 0.35 −0.09 0.08 1 r  

r 0.34 0.36 0.09 0.15 0.26 1 g  
g 0.36 0.25 −0.12 −0.16 0.68 0.53 1 b  
b 0.25 0.29 −0.16 −0.19 0.24 0.58 0.67 1 rb  
rb 0.60 0.44 0.28 0.14 0.05 0.57 0.34 0.57 1 rg  
rg 0.54 0.53 0.29 0.16 0.07 0.27 0.47 0.18 0.28 1 bg
bg 0.33 0.39 0.31 0.14 −0.06 0.35 0.47 0.14 0.55 0.58 1 TGI

TGI 0.90 0.89 −0.18 −0.14 0.14 0.24 0.17 0.17 0.49 0.63 0.27 1 Chl
Reference 

data
Chl 0.94 0.93 0.16 0.08 0.91 0.58 0.80 0.15 0.05 0.16 0.14 0.73 1 N
N 0.93 0.91 0.09 0.13 0.86 0.36 0.86 0.58 0.18 0.28 0.37 0.68 0.94 1 LA

LA 0.95 0.93 0.22 −0.36 0.89 0.74 0.85 0.36 −0.18 −0.18 −0.18 0.57 0.92 0.93 1

0.01 0.50 0.75 0.99
Note. Explanation of acronyms in Table 1; significant values are those marked with green colour (P ≤  0.01). 

accurately and quickly similar to reported in horticultural 
crops by Usha and Singh (2013). 

The TGI index showed a moderate and significant 
correlation (r > 0.60) with Chl and N. In contrast, the 
INT, SAT, r, b, rb, bg and rg indices produced a weak 

to moderate non-significant correlation (r < 0.60) with 
reference data. 

In summary, it was found that the most efficient 
spectral indices are those that consider the spectral bands 
of the green and red region. On the other hand, the ExG 
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and g indices that incorporate the blue band have lower 
performance in the prediction of Chl, N and leaf area, 
which may be due to the low sensitivity of plant tissue in 
the blue channel (~450 nm). 

Comparison between reference data and 
spectral indices from RGB digital images. Chlorophyll 
concentration. The Chl values were compared for the 
two periods: (1) the whole crop cycle from 1 to 42 DAT 
and (2) from 22 to 42 DAT (Table 4). For the entire cycle, 
NGRDI (r = 0.94) and g (r = 0.86) indices had a strong 
linear correlation (Fig. 3). 

considered (Fig. 3). The index that presented the highest 
correlation was ExG (r = 0.92, RMSE = 0.03) compared 
to NGRDI (r = 0.93, RMSE = 0.04) and g (r = 0.93, 
RMSE = 0.02). Similar results were obtained by Sun 
et al. (2016), who recorded strong correlations (r ≥ 0.88) 
between ExG index and Chl concentration in cucumber. 
In this sense, Baresel et al. (2017) suggest that NGRDI 
and ExG indices can determine the Chl concentration in 
crops, because when using the g band (500 to 550 nm) it 
highlights the pigments responsible for the green colour 
of plants such as Chl allowing its quantification. On the 
other hand, Hunt et al. (2013) found that the relationship 
between NGRDI and Chl is not well established for all 
stages of the crop but could be more pronounced in early 
stages due to the existence of an underlying correlation 
with leaf area. 

Nitrogen (N) concentration. Table 5 shows the 
correlation analysis and regression coefficients between 
N concentration and spectral indices values. 

Table 4. Linear regression coefficients and standard error 
(SE) for the relationship between the chlorophyll (Chl) 
concentration and spectral indices 

Period 
evaluated

Spectral 
index

Linear regression 
coefficient SE

a b
1 to 42 
DAT NGRDI** 0.1052 1.3601 0.07

ExG** 0.1054 0.8673 0.08

22 to 42 
DAT

g** 0.1133 2.1406 0.06
NGRDI** 1.4536 0.1804 0.06

ExG** 1.4524 0.6623 0.07
g** 1.0622 0.2043 0.05

Explanation of acronyms in Table 1; ** – high significant 
correlation between the variables (P ≤  0.01) 

Explanation of acronyms in Table 1

Figure 3. Correlation between the chlorophyll (Chl) 
concentration and spectral indices (NGRDI, ExG and g) 
at 42 DAT (A) and the last 21 DAT (B) 

These results are similar to those obtained by 
Álvarez-Bermejo et al. (2017) in tomato and cucumber 
using the NGRDI (r = 0.90), and De la Cruz et al. (2011) 
in wheat using the g index (r = 0.97). Besides, there is a 
strong linear correlation with the ExG index (r = 0.88, 
RMSE = 0.03), a value comparable to that reported by 
Elazab et al. (2016) in wheat (r > 0.93). On the other 
hand, Lin et al. (2013) obtained correlation coefficients 
of 0.85 between ExG and Chl concentration in cucumber 
plants during their vegetative stage. 

A greater adjustment to the linear regression 
model was obtained if the values from 22 to 42 DAT are 

Table 5. Linear regression coefficients for the relationship  
between the nitrogen (N) concentration and spectral 
indices 

Period 
evaluated

Spectral 
index

Linear regression 
coefficient SE

a b
1 to 42 
DAT NGRDI** 7.9238 1.8789 0.06

ExG** 5.1094 1.8646 0.07
22 to 42 

DAT
g** 12.2480 0.1133 0.07

NGRDI** 3.6735 1.5245 0.08
ExG** 2.3247 1.9866 0.06

g** 6.6737 0.1535 0.05
Explanation of acronyms in Table 1; ** – high significant 
correlation between the variables (P ≤  0.01) 

The concentration values of N had a high linear 
correlation with the NGRDI (r = 0.95, RMSE = 0.06), 
ExG (r = 0.94, RMSE = 0.04) and g index (r = 0.96, 
RMSE = 0.04) throughout the 42 DAT (Fig. 4). 

Explanation of acronyms in Table 1

Figure 4. Correlation between the nitrogen (N) 
concentration and spectral indices (NGRDI, ExG and g) 
at 42 DAT (A) and the last 21 DAT (B) 
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During the vegetative stage of crop lettuce (last 
21 DAT of the crop cycle), the relationship between the 
concentration of N and the NGRDI (r = 0.97, RMSE = 
0.05), ExG (r = 0.97, RMSE = 0.04) and g (r = 0.97, RMSE 
= 0.06) showed greater adjustment to the linear regression 
model (Fig. 4). These results agree with those obtained 
by Meyer and Neto (2008), who reported coefficients of 
correlation ≥ 0.85 for the ExG index in the quantification 
of N in stages of vegetative growth in soybean. 

Few studies use the NGRDI to determine the 
concentration of N in vegetables; however, the use of 
this spectral index has shown strong correlation (≥0.84) 
in the vegetative stage of maize (Hunt et al., 2013; 
Elazab et al., 2016), rice (Zheng et al., 2018) and wheat 
(Yang et al., 2020). Besides, spectral indices of the RGB 
visible region were shown to be efficient in determining 
N concentration in bean plants due to their effect on the 
amount and colouration of pigments within plant tissues 
(Lee, Lee, 2013), which indicates that the use of spectral 
indices represents a reliable and accurate methodology 
for quantifying the concentration of N in leafy crops. 

Leaf area. Table 6 shows the regression 
coefficients and the results of the statistical analysis. 

leaf area in small leaves, this limitation is reduced as the 
crop grows. Therefore, the efficiency of this tool using 
the spectral indices derived from RGB digital images 
depends on the phenology and plant growth habit. 

Conclusions 
1. The normalized green-red difference index 

(NGRDI) had the highest correlation coefficient with the 
values of Chl (r = 0.95) and N (r = 0.93). Besides, the 
excess green (ExG) index obtained the highest correlation 
with leaf area (r = 0.92). These indices highlight the 
spectral response in the green and red regions and are 
more accurate than the indices using the blue band. 

2. Romaine lettuce has an accelerated leaf growth 
in the last stages of its vegetative cycle. In this study, the 
values of NGRDI, ExG and green channel (g) indices 
compared to leaf area are better adjusted to an exponential 
model. So, the use of this technique requires considering 
the type of crop and its phenology or growth habit. 

3. The accuracy of the spectral indices derived 
from RGB (red, green and blue) digital images for 
estimating N, Chl status and leaf area increases in the later 
stages of romaine lettuce cultivation. It is because in the 
early stages of growth the leaves are small in size, which is 
a spatial limitation for detection by the RGB camera. 

4. The use of spectral indices derived from RGB 
digital images is useful and accurate for the estimation 
of N, Chl status and leaf area during the production of 
lettuce. It could be a low-cost alternative to destructive 
methods, and it can be part of a combined system with 
portable meters (SPAD, atLEAF and others) for real-time 
monitoring of vegetables grown in a crop factory. 
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Table 6. Exponential regression coefficients for the 
relationship between the leaf area and spectral indices 

Period 
evaluated

Spectral 
index

Exponential regression 
coefficient SE

a b
1 to 42 
DAT NGRDI** 1.2705 2.4701 0.06

ExG** 2.6704 2.1802 0.07
22 to 42 

DAT
g** 4.1901 1.8506 0.07

NGRDI** 1.5974 1.0563 0.08
ExG** 1.2445 1.4357 0.06

g** 2.1352 1.0406 0.05

Explanation of acronyms in Table 1; ** – high significant 
correlation between the variables (P ≤  0.01) 

The indices NGRDI (r = 0.94, RMSE = 0.05), 
ExG (r = 0.95, RMSE = 0.04) and g (r = 0.96, RMSE = 
0.03) showed best fit to an exponential model to estimate 
leaf area (Fig. 5). 

This mathematical model is different from the 
one reported by Campillo et al. (2010) for the g index, 
because they found a better fit to a linear model (r ≥ 0.92) 
in tomato. Besides, Horgan et al. (2015) and Beniaich 
et al. (2019) reported values with fit to linear models 
between leaf area and NGRDI in sweet pepper (r = 0.83) 
and basil (r = 0.85), respectively. 

As is well known, the biomass can be used as 
a predictor of leaf area, especially in the early stages of 
crop growth. Studies in onion (Ballesteros et al., 2018) 
and tomato (Sun, Wang, 2019) report high correlations (r 
≥ 0.87) between the g spectral index and leaf area; this is 
attributed to the growth rate of the crop. Furthermore, Hunt 
et al. (2013) found that the NGRDI is highly correlated 
with the amount of biomass in maize and soybean crops, 
especially in early stages, but tends to become saturated 
as the crop develops. Therefore, NGRDI can be useful in 
short-cycle plants such as leafy vegetables. 

In the early stages of lettuce cultivation, the 
growth rate of leaf area is lower than in the later stages; 
therefore, the relationship with the indices with this 
parameter is not linear. Besides, results of our experiment 
show better fit to the exponential model in the last 21 
days of the crop. This can be explained, because in early 
stages the RGB camera has spatial limitation to detect 

Explanation of acronyms in Table 1

Figure 5. Correlation between the concentration of leaf 
area and spectral indices (NGRDI, ExG and g) at 42 DAT 
(A) and the last 21 DAT (B) 

Nitrogen and chlorophyll status in romaine lettuce using spectral indices from RGB digital images
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Azoto ir chlorofilo kiekis sėjamųjų salotų lapuose,      
nustatytas naudojant raudonai žaliai mėlyno (RŽM) 
skaitmeninio vaizdo spektrinius indeksus 
R. O. Mendoza-Tafolla1, R. E. Ontiveros-Capurata2, P. Juarez-Lopez1, I. Alia-Tejacal1,            
V. Lopez-Martinez1, O. Ruiz-Alvarez3

1Autonominio Morelos valstijos universiteto Žemės ūkio mokslų fakultetas, Meksika 
2Nacionalinės mokslo ir technologijų tarybos Meksiko vandens technologijos institutas, Meksika 
3Nacionalinio miškų, žemės ūkio ir gyvulininkystės tyrimų instituto (INIFAP) 
Nacionalinė nuotolinio stebėjimo ir modeliavimo laboratorija, Meksika 

Santrauka 
Destruktyvūs augalų mitybos įvertinimo metodai yra tikslūs ir standartizuoti, tačiau brangūs ir apriboti erdvinės 
skalės. Nedestruktyvių metodų, pavyzdžiui, skaitmeninio vaizdo naudojimas, duoda greitus ir patikimus rezultatus 
in situ. Tačiau yra nedaug informacijos apie šių nedestruktyvių metodų naudojimą tiriant lapines daržoves. 
Tyrimo metu buvo vertinta azoto (N) ir chlorofilo (Chl) koncentracija sėjamųjų salotų lapuose naudojant 
spektrinius indeksus, gautus iš raudonai žaliai mėlyno (RŽM) skaitmeninio vaizdo. Salotos augintos plastikiniuose 
šiltnaminiuose tuneliuose modifikuotame Steinerio tirpale ir laistytos penkių koncentracijų N tirpalu: 0, 4, 8, 
12 ir 16 mEq L-1 NO3-N (atitinkamai 0, 248, 496 ir 744 mg L-1). Laistant 16 mEq L-1 NO3-N, salotų augimas 
buvo didžiausias 42 dieną po persodinimo. Augalų skaitmeniniai vaizdai kas savaitę buvo fotografuojami RŽM 
fotoaparatu ir apdoroti, kad būtų gauta mastelio matrica ir dvylika augalų spektrinių indeksų. Spektrinių indeksų 
koreliacijos analizė parodė, kad normalizuotas žaliai raudonos komponentės skirtumo indeksas, perteklinis žalios 
komponentės (ExG) ir žaliojo kanalo (g) indeksai sudarė teigiamą tiesinę koreliaciją su N (r > 0,93) ir Chl (r > 
0,93) kiekiu. Taip pat buvo nustatyta eksponentinė koreliacija su lapų plotu (r > 0,86), kuri po persodinimo praėjus 
21 dienai buvo stipresnė dėl greitesnio lapų augimo vegetacijos metu. 
Tyrimo duomenimis, RŽM skaitmeninio vaizdo taikymas yra nebrangus, nedestruktyvus, patikimas ir tikslus 
metodas, siekiant įvertinti sėjamųjų salotų N bei Chl koncentraciją ir lapų plotą augimo metu. Šis metodas galėtų 
būti veiksminga alternatyva, kartu su nešiojamais chlorofilo matavimo prietaisais (SPAD) realiuoju laiku leidžianti 
stebėti salotų mitybinę būklę, ypač daržoves auginant pramoniniu būdu. 

Reikšminiai žodžiai: Lactuca sativa var. longifolia, lapų plotas, nedestruktyvus metodas, azotas, chlorofilas, 
spektrinis indeksas. 
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