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Abstract
Short-term pre-harvest red light treatment was evaluated as a tool to reduce nitrate (NO3) contents in leafy 
vegetables, cultivated under low-light conditions in a greenhouse. Corn salad (Valerianella locusta L., ‘Vit’), 
amaranth (Amaranthus chlorostachys Willd., ‘Red Army’) and tatsoi (Brassica rapa var. rosularis L., ‘Rozetto F1’) 
were cultivated under low-light conditions and 1–7 days before harvest were treated with 638 nm red light emitting 
diode light. The effects of light treatment on NO3 and nitrite (NO2) contents, reducing enzyme activities and plant 
photosynthetic performance of different leafy vegetable species were explored seeking for comprehensive approach 
for the control of NO3 metabolism. Nitrate, nitrite, total protein contents and reducing enzyme activity depend on 
plant species, lighting treatment duration and their interaction. A remarkable decrease in nitrates and an increase in 
NO3 reductase activity were observed 3 days after red light treatment. It followed by a significant increase in NO2 and 
protein contents in corn salad and amaranth. A medium correlation between photosynthetic rate and NO3 contents 
was determined for tatsoi and corn salad. A negative statistically insignificant correlation between these indicators 
was established for amaranth. Short-term pre-harvest red light treatment can be applied as a technological tool to 
reduce NO3 contents in green vegetables, cultivated under low-light conditions. The obtained results confirm the 
significant relationship between plant photosynthetic rate and nitrate metabolism, as well as indicate the sensitive, 
but differential physiological response of different vegetable species to the applied lighting. 
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Introduction
Nitrate (NO3) is classed by food safety authorities 

as a contaminant in fresh vegetables. NO3 itself is fairly 
non-toxic for humans; however, its toxic metabolites, such 
as nitrite (NO2) and N-nitroso compounds, might have 
deleterious effects on health (Weightman, Hudson, 2013). 
Therefore, European Food Safety Authority (EFSA, 
2008) suggested that acceptable daily consumption 
of NO3 ions should not exceed 0.007 mg kg-1 of body 
weight per day. The European Commission (Commission 
regulation (EU) No. 1258/2011) has set maximum limits 
for NO3 concentrations in green vegetables, which tend 
to accumulate high levels of NO3. Brian and Ivy (2015) 
noticed that typical consumption patterns of fruits and 

vegetables exceeded regulatory limits for dietary nitrate 
and this fact calls into question the rationale behind current 
nitrate and nitrite regulation. The nitrate problematics is 
important, as current diet is rich in a wide variety of leafy 
vegetables species; however, the modern horticultural 
technologies allow controlling the nutritional value of 
green vegetables. Therefore, the questions of nitrate 
contents in green vegetables revive in “plant factories”, 
where plants are cultivated under fully controlled 
environmental conditions and in greenhouses in northern 
regions, where green vegetables are seasonally cultivated 
under low natural lighting conditions. 

Since long ago, nitrogen fertilization and light 
intensity have been identified as the major factors that 
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influence NO3 content in vegetables (Santamaria, 2006). 
Light emitting diodes (LEDs) have provided new 
possibilities for horticulture and research. As a result, 
the effects of lighting spectra on various aspects of plant 
metabolism, as well as on NO3 contents were analysed 
(Olle, Viršile, 2013; Bian et al., 2015). Red light was 
identified as having the highest capacity for stimulating 
the activity of NO3 reductase, which means that red light 
can effectively reduce NO3 contents in plants (Lillo, 
2008; Bian et al., 2015). Other authors have reported that 
blue light is also beneficial for lowering NO3 contents in 
lettuces, as the composition of red and blue light is more 
favourable for plant growth and photosynthesis (Ohashi-
Kaneko et al., 2007; Qi et al., 2007; Lin et al., 2013). Bian 
et al. (2016) suggest that addition of green light to red and 
blue LEDs even enhanced the NO3 reduction effect. 

Nitrate problematics also has the economic 
nuances, as investments in artificial lighting highly 
increase the costs of production. Therefore, various short-
term plant treatment strategies have been developed, 
seeking to reduce NO3 contents in plant tissues. The 
removal, reduction or replacement of inorganic nitrogen 
by other ions in nutrient solution (Croitoru et al., 2015) 
were combined with artificial lighting (Liu, Yang, 2012), 
or NO3 nutrition was applied depending on the level of 
lighting (Demšar et al., 2004). Short-term pre-harvest 
LED lighting exposure was proved as an efficient tool to 
reduce NO3 contents in lettuces (Samuolienė et al., 2009; 
Zhou et al., 2012; Wanlai et al., 2013) and other green 
vegetables (Bliznikas et al., 2012). Continuous lighting 
in the pre-harvest stage was applied (Wanlai et al., 2013; 
Bian et al., 2016), seeking to increase photosynthetic 
efficiency and to reduce nitrate contents (Bian et al., 
2016; Nicole et al., 2016). Photosynthesis and NO3 
metabolism are highly interconnected, as carbohydrates 
provide energy and carbon skeleton for NO3 assimilation 
(Bian et al., 2015) as well as share the osmoregulative 
functions in the cell with NO3 ions (Umar, Iqbal, 2007; 
Bian et al., 2016). The decrease in NO3 contents is usually 
accompanied by increased carbohydrate and ascorbic acid 
level in vegetable tissues (Samuolienė et al., 2012; Zhou 
et al., 2012; Wanlai et al., 2013). Additional beneficial 
effects of pre-harvest LED light treatment have also been 
identified, as increase in leaf pigmentation due to higher 
levels of anthocyanins (Owen, Lopez, 2015; Nicole et al., 
2016), flavonoids, tocopherols (Samuoliene et al., 2012), 
which also results in improved antioxidant properties 
of vegetables. Most of the research was performed with 
different lettuce species; however, the effect of light 
exposure on NO3 metabolism is also highly dependent 
on plant species (Bliznikas et al., 2012), light intensity 
(Wanlai et al., 2013), cultivation season (Samuoliene 
et al., 2012; Wojciechowska et al., 2016) which affects 
overall internal physiological activities. 

Therefore, the objective of this study was to 
evaluate the effects of short-term pre-harvest red LED 
light treatment on the NO3 and NO2 contents, reducing 
enzyme activities and plant photosynthetic performance of 
different leafy vegetable species seeking for comprehensive 
approach for the control of NO3 metabolism. 

Materials and methods
Plant cultivation. Experiments were performed 

in the greenhouses of Institute of Horticulture, Lithuanian 
Research Centre for Agriculture and Forestry from March 
to April of 2015. The seeds of corn salad (Valerianella 
locusta L., ‘Vit’), red leaf amaranth (Amaranthus 
chlorostachys Willd., ‘Red Army’) and tatsoi (Brassica 
rapa var. rosularis L., ‘Rozetto F1’) were obtained from 
CN Seeds Ltd., United Kingdom. Leafy vegetables 
were cultivated in neutralized peat substrate (Profi mix 
(Durpeta, Lithuania: pH 6–6.5; N 115 mg L-1, P2O5 
55 mg L-1, K2O 160 mg L-1 with microelements Fe, Mn, 
Cu, B, Mo and Zn) in plastic trays of 70 ml cell volume, 
three plants per cell. Equal soil humidity was maintained, 
once a week plants were fertilized with 0.2% ammonium 
nitrate (NO3) solution. During experiments, ~18 ± 2/22 
± 2°C night/day temperature was maintained, relative 
air humidity was 55–70%. Average daily photosynthetic 
photon flux density (PPFD) of natural lighting in the 
greenhouse varied between 170–250 µmol m-2 s-1. 

Red light emitting diode (LED) treatment. Null 
(reference), 1, 3, 5 and 7 days before harvesting corn salad, 
tatsoi and amaranth were supplementary illuminated 
with an originally designed red light emitting diodes 
(LEDs) lighting unit (Bliznikas et al., 2009; Žukauskas 
et al., 2012). The unit was designed seeking to minimize 
radial heat emission at high light intensities, therefore it 
can be placed close to the plants (~30 cm above). The 
lighting unit consists of 638 nm LEDs LUXEON III Star, 
model LXHL-LD3C (Philips LLC, USA), that creates 
300 µmol m-2 s-1 PPFD and illuminates 3.5 m2 area at 16 h 
photoperiod. Trays with plants were transferred under 
investigated lighting unit (4 trays per treatment, 72 plants 
per tray) in a randomized order. Each tray was treated as 
the replication of the treatment. Plants were harvested at 
baby leaf stage, when 5–6 leaves had formed: tatsoi was 
grown for 21 days, corn salad and amaranth for 25 days 
from sowing. After lighting exposure, photosynthetic and 
biochemical parameters were evaluated. The first fully 
developed leaves of randomly selected plants from each 
LED light treatment were used for biochemical analysis 
and measurements. 

Photosynthetic rate (µmol CO2 m-2 s-1) 
was measured using the LI-6400XT (LI-COR, USA) 
photosynthesis system on the first fully matured leaf. The 
instrument was set for 400 µmol s-1 airflow, 25°C cell 
temperature, 400 µmol CO2 mol-1, 60% relative humidity 
in the cell and light intensity of 200 µmol m-2 s-1. 

Chlorophyll and flavonol indexes were 
measured in the first fully matured leaf using Dualex 
meter (Dynamax, USA), 10 plants per treatment. 

For biochemical analysis, the leaves from 
each light treatment were combined in single conjugated 
biological sample and three analytical replications were 
performed for each measurement. Total protein contents 
and NO3 reductase activity were determined in fresh 
plant matter. For NO3 analysis, plant material was dried 
at 70°C for 48 h. All data are expressed on a fresh weight 
(FW) basis. 

Nitrate (NO3) and nitrite (NO2) contents were 
determined by spectrophotometric method. Samples 
were prepared by hot water (70°C, 1:100 w:w) extraction 
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from dry plant material in ultrasonic bath for 30 min. 
Initial NO2 concentration and total NO2 after zinc 
reduction were determined by diazotization-coupling 
Griess reaction (Merino, 2009) at 540 nm. NO3 and NO2 
contents (mg kg-1) were determined according to the 
calibration curve and expressed on the FW basis. 

Total protein contents were determined 
according to Bradford (1976) method. The fresh 
material was ground with liquid nitrogen and extracted 
with 50 mM phosphate buffer solution with 1 mM 
ethylenediaminetetraacetic acid (EDTA), 10 mM 
2-merkaptoethanol, 100 μM phenylmethylsulfonyl 
fluoride (PMSF). Homogenate was centrifuged for 
10 min 4000 rpm min-1 and used for total protein content 
and enzyme activity determination. The sample was 
mixed with diluted Bradford reagent and absorbance at 
595 nm was measured. Total protein contents (mg g-1 
in FW) were determined according to the bovine serum 
albumin (BSA) calibration curve. 

Nitrate reductase (NR) activity was determined 
by mixing 0.1 ml of protein extract with assay mix, 
containing 25 mM phosphate buffer (pH 7.3), 10 mM 
potassium nitrate (KNO3) and 0.5 mM EDTA, and adding 
2.0 mM β-nicotinamide adenine dinucleotide (β-NADH), 
total volume of 2 ml. After incubation at 30°C for 5 min, 
reaction was stopped with 1 ml of 1% sulfanilamide in 3N 
HCl and 1 ml of 0.02% N-(1-naphthyl)-ethylenediamine 
dihydrochloride. After 10 min incubation in room 
temperature the absorption was measured at 540 nm and 
the contents of NO2 formed were determined according to 
a calibration curve of standard sodium nitrite solutions. 
Enzyme activity was evaluated as an amount of NO2 ions 
formed per hour (µmol NO2 g

-1 h-1). 
Nitrite (NO2) reductase (NiR) activity was 

determined (Takahashi et al., 2001) by mixing protein 
extract with 50 mM phosphate buffer (pH 7.5), 1 mM 
sodium nitrite (NaNO2) and 1 mM methyl viologen. 
Reaction was initiated by adding 57.4 mM sodium dithionite 
(Na2S2O4) in 290 mM sodium bicarbonate (NaHCO3) 
solution. After 5 min incubation at 30°C temperature, 
20 µl of reaction mixture was transferred to new vial, 
containing 480 µl of water and vortexed. Immediately, 
500 µl 1% sulfanilamide in 3N HCl and 500 µl 0.02% 
N-(1-naphthyl)-ethylenediamine dihydrochloride were 
added. After 10 min absorption was measured at 540 nm. 
Enzyme activity was expressed as the amount of NO2 ions 
formed per hour (µmol NO2 g

-1 h-1). 
Statistical analysis. Values are presented as 

mean ± standard deviation in fresh weight (FW). For 
data evaluation the Student’s t-test and determination 
coefficients (simple linear regression) at p < 0.05 were 
used (Raudonius, 2017). Softwares MS Excel, version 7.0, 
and Statistica, version 7.0 were used for data processing. 

Results and discussion
Artificial lighting with 638 nm red LEDs, 

applied for 1–7 days before harvesting can help reduce 
energy costs for plant cultivation in commercial 
greenhouses, compared to conventional lighting during 
the whole cultivation cycle. The effect of applied lighting 
was dependant on plant species and duration of lighting 
exposure (Fig.). A 3-day pre-harvest lighting reduced 

NO3 contents in corn salad, amaranth and tatsoi by 
2.1, 8.1 and 2.2 times, respectively, as compared to the 
reference non-illuminated plants. 

Strong negative correlation was determined 
between lighting duration and NO3 contents in amaranth 
and tatsoi (R = −0.7962 and R = −0.8021 respectively, 
p ≤ 0.05). Corn salad adapted to high PPFD red light and 
illuminating more than 3 days, no further NO3 reduction 
was observed (Fig. A). The decrease in NO3 contents 
after 3 days of lighting was followed by the increase in 
NO2 contents. NO2 contents (Fig. D–F) after 3 days of red 
light treatment were by 4.8, 1.8 and 1.7 times higher in 
corn salad, amaranth and tatsoi, respectively. However, 
no direct correlation between NO3 and NO2 contents was 
determined when illuminating plants with red light for 
1–7 days. Burns et al. (2011), analysing the genotype 
and environment effects on NO3 assimilation processes, 
concluded that variability in NO3 accumulation under 
different environmental conditions arises more from 
differences in uptake of nitrate than from differences 
in efficiency of its chemical reduction. However, the 
changes in NO3 and NO2 contents and enzymatic activity 
during 1–7 days of light exposure indicate an important 
direct and indirect role of light on NO3 metabolism. The 
remarkable increase in NO2 contents suggests the need 
for more detailed analysis of this contaminant in green 
leafy vegetables. After analysis of numerous lettuce and 
spinach samples Iammarino et al. (2014) have also raised 
the idea about determining maximum admissible level 
for nitrites in leafy vegetables, as high NO2 contents do 
not necessarily correlate with high levels or NO3. 

The reduction of NO3 ions occurs in two 
step processes. NO3 is first reduced by cytosolic nitrate 
reductase (NR) to NO2, which is then imported into the 
chloroplast and reduced further by nitrite reductase (NiR) 
into ammonium (Krapp, 2015). NR is considered as the 
key enzyme in this process (Wojciechowska et al., 2016). 
The obtained results show that NR and NiR activities 
are regulated independently. NO3, NO2, total protein 
contents and reducing enzyme activity depend on plant 
species, lighting treatment duration and their interaction 
(Tables 1 and 2). Short-term red LED light treatment 
enhanced NR activity. The highest enzyme activity was 
determined after 5–7 days of supplemental red LED light 
exposure in amaranth and tatsoi. NR activity in amaranth 
increased 1.79 times after 5 days of lighting, in tatsoi 
– 1.70 times after 7 days of illumination. NiR activity 
was also determined the highest after 5 days in amaranth 
and after 7 days in tatsoi; it was increased 1.67 and 2.06 
times, respectively, as compared to non-illuminated 
plants. In corn salad, NR activity changed insignificantly; 
NiR activity was determined lower, as compared to non-
illuminated plants. 

The analysis of total protein contents showed 
that lighting duration had statistically significant effect. 
The most pronounced effect was determined in corn salad 
after 5 days and in amaranth after 7 days’ illumination 
with red LED light. Protein contents increased 1.54 and 
1.34 times, as compared to the reference. The increase 
in protein contents did not correlate with NO3 contents 
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Table 1. Nitrate reductase (NR), nitrite reductase (NiR) activities and total protein contents in leafy vegetables after 
1–7 days’ pre-harvest red LED lighting treatment 

Duration of 
red light exposure

Valerianella 
locusta

Amaranthus 
chlorostachys

Brassica rapa 
var. rosularis

NR
µmol NO2 g

-1 h-1

reference 5.23 ± 0.46 8.88 ± 0.34 5.87 ± 0.15
1 day 5.49 ± 0.10 10.28 ± 0.56 A 8.97 ± 1.41 A
3 days 3.98 ± 0.09 B 9.61 ± 0.87 7.33 ± 0.78 A
5 days 6.79 ± 0.24 A 15.79 ± 0.62 A 6.38 ± 0.15 A
7 days 4.37 ± 0.50 B 12.31 ± 0.26 A 10.00 ± 1.53 A

NiR
µmol NO2 g

-1 h-1

reference 23.26 ± 1.23 27.12 ± 1.44 8.21 ± 0.44
1 day 18.14 ± 1.02 B 15.18 ± 0.85 B 3.76 ± 0.12 B
3 days 20.53 ± 1.11 B 15.79 ± 0.93 B 3.63 ± 0.20 B
5 days 11.78 ± 0.68 B 45.27 ± 2.63 A 14.67 ± 0.85 A
7 days 20.51 ± 1.23 B 35.28 ± 2.22 A 16.95 ± 1.02 A

Total proteins
mg kg-1

reference 1.45 ± 0.13 5.14 ± 0.13 6.14 ± 0.02
1 day 2.30 ± 0.09 A 6.74 ± 0.35 A 3.76 ± 0.12 B
3 days 2.09 ± 0.15 A 6.04 ± 0.33 A 6.14 ± 0.05
5 days 2.24 ± 0.15 A 6.66 ± 0.22 A 4.93 ± 0.16 B
7 days 1.70 ± 0.03 A 6.91 ± 0.20 A 3.79 ± 0.13 B

Note. A – value significantly higher, B – value significantly lower than reference (non-illuminated plants) according to Student’s 
t-test, p ≤ 0.05; each data point represents mean ± standard deviation, n = 3. 

Note. A – value significantly higher, B – value significantly lower than reference (non-illuminated plants) according to Student’s 
t-test, p ≤ 0.05; each data point represents mean ± standard deviation, n = 3. 

Figure. The effect of 1–7 days’ pre-harvest red light emitting diode (LED) treatment on nitrate (NO3) and nitrite (NO2) 
contents in leafy vegetables 
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Table 2. Determination coefficient R between nitrate 
reductase (NR), nitrite reductase (NiR), nitrate, nitrite 
and protein contents in leafy vegetables 

Valerianella locusta
 total proteins nitrites nitrates

NR 0.3229 0.0023 0.8268
NiR −0.7019* −0.4095 −0.6968*

Nitrates 0.1710 −0.2448 –
Nitrites 0.3870 – –

Amaranthus chlorostachys
 total proteins nitrites nitrates

NR 0.5674* −0.3250 −0.6075*
NiR 0.2379 −0.5471* −0.3740

Nitrates −0.5057 −0.4201 –
Nitrites 0,2399 – –

Brassica rapa var. rosularis
 total proteins nitrites nitrates

NR −0.7221* −0.2995 −0.4750
NiR −0.3951 −0.7529* −0.4886

Nitrates 0.6598 0.0676 –
Nitrites 0.3473 – –

* – p ≤ 0.05 

Table 3. Photosynthetic rate, chlorophyll and flavonol indexes in leafy vegetables after 1–7 days’ pre-harvest treatment 
with red 638 nm light 

Duration of 
red light exposure

Valerianella 
locusta

Amaranthus 
chlorostachys

Brassica rapa 
var. rosularis

Photosynthetic rate 
µmol CO2 m

-2·s-1

Reference 11.80 ± 1.63 2.54 ± 1.15 4.65 ± 0.50
1 day 12.56 ± 1.46 7.21 ± 3.50 4.13 ± 0.64
3 days 11.40 ± 1.14 9.44 ± 3.67 A 2.86 ± 0.28 B
5 days 13.71 ± 0.54 7.44 ± 3.79 3.22 ± 0.98
7 days 13.91 ± 1.41 5.61 ± 0.96 A 2.74 ± 0.20 B

Chlorophyll index

Reference 36.72 ± 0.48 21.90 ± 0.38 36.94 ± 2.24
1 day 26.97 ± 0.59 36.18 ± 1.06 A 35.04 ± 2.64
3 days 29.46 ± 0.91 B 25.78 ± 1.81 A 36.12 ± 2.54
5 days 29.63 ± 1.83 B 24.75 ± 0.82 A 35.64 ± 2.43
7 days 33.53 ± 3.95 B 20.38 ± 0.91 B 27.80 ± 3.55 B

Flavonol index

Reference 0.34 ± 0.03 0.18 ± 0.01 0.61 ± 0.03
1 day 0.33 ± 0.03 0.19 ± 0.03 0.71 ± 0.09
3 days 0.39 ± 0.01 0.26 ± 0.05 A 0.84 ± 0.06 A
5 days 0.39 ± 0.06 0.23 ± 0.02 A 0.94 ± 0.04 A
7 days 0.48 ± 0.03 A 0.28 ± 0.03 A 0.99 ± 0.03 A

Note. A – value significantly higher, B – value significantly lower than reference (non-illuminated plants) according to Student’s 
t-test, p ≤ 0.05; each data point represents mean ± standard deviation, n = 3. 

Table 4. Determination coefficient between nitrates and 
photosynthetic rate in leafy vegetables 

Valerianella 
locusta

Amaranthus 
chlorostachys

Brassica 
rapa var. 
rosularis

nitrates

Photosynthesis 
intensity 0.5696* −0.5117 0.6324*

*– p ≤ 0.05 

in plant tissues. However, strong negative correlation 
was determined between total protein content and NiR 
in corn salad and NR in tatsoi (Table 2). In amaranth, 
positive correlation between NR activity and total protein 
contents was determined. Liu et al. (2016) analysed 
primary metabolism of NO3 in lettuce, cultivated under 
different light sources, and proposed that wide spectrum 
lamps, such as fluorescent, determined the lowest NO3 
contents in lettuce tissues, but stimulated uptake of NO3 
from soil and protein synthesis, when red and blue LED 
light inhibited protein synthesis. These trends, as well 
as obtained results confirm the differential response 
of plant species and varieties to light exposures. NO3 
reduction upon light treatments was more efficient in 
species naturally containing higher concentrations of 
antioxidant phenols, anthocyanins (Samuoliene et al., 
2011; Bliznikas et al., 2012), as pre-harvest changes in 
lighting conditions require plant adaptation and might 
evoke photostress conditions. 

The photosynthetic parameters (Table 3) are 
also affected by pre-harvest red LED light treatment. 

Medium correlation between photosynthetic 
rate and NO3 contents was determined in tatsoi and corn 
salad. A negative statistically insignificant correlation 

between these indicators was established for amaranth 
(Table 4). In corn salad, no statistically significant 
differences in photosynthetic rate were observed. In 
amaranth, photosynthesis was remarkably higher after 
1–3 days of red LED treatment (photosynthetic rate was 
3.7 times higher, as compared to non-illuminated plants). 
Further lighting (5–7 days) resulted in slight decrease in 
photosynthetic rate, but it was still higher, as compared to 
the reference. In tatsoi, photosynthetic rate was negatively 
affected by pre-harvest light treatment. No direct 
correlation between photosynthetic rate and chlorophyll 
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content was observed, as the changes in chlorophyll 
content are the result of longer-term exposure, when 
photosynthetic rate changes immediately under different 
lighting conditions. In corn salad chlorophyll index 
decreased with the duration of pre-harvest light exposure. 
In amaranth, chlorophyll index increased during the first 
days of treatment, but significantly decreased after 7 days’ 
exposure. In tatsoi, remarkable decrease in chlorophyll 
index was determined after 7 days’ exposure. 

The increase in flavonol index in leaves reflects 
plant adaptation to unfavourable conditions. High PPFD 
flux of red light can act as a photostressor for plants and 
evoke the response of antioxidant system (Petrussa et al., 
2013). Strong positive correlation (R = 0.73–0.93) was 
determined between flavonol index and lighting duration 
in all green vegetables, which shows active adaptation 
processes. 

Conclusions 
1. Short-term pre-harvest red light treatment can 

be applied as a technological tool to reduce nitrate (NO3) 
contents in leafy vegetables, cultivated under low natural 
light conditions. 

2. The obtained results show a close interrelation 
between NO3 metabolism and photosynthesis parameters 
under light treatments, but no single trend was determined 
in all vegetable species. The higher photosynthetic 
photon flux density (PPFD) lighting, applied on mature 
plants before harvesting, evoked the adaptation processes 
and the response of antioxidant system and might act as a 
photostressor for more sensitive vegetable species. 

3. The effect of light on NO3 reduction is closely 
linked to overall plant light sensitivity and internal 
physiological activities. In corn salad (Valerianella 
locusta L.), the applied lighting had no remarkable effect 
on photosynthetic rate and enzyme activity, thus the NO3 
reduction was observed only after 3 days of lighting 
and further increased, as plants adapted to the applied 
lighting. In amaranth (Amaranthus chlorostachys  Willd.) 
and tatsoi (Brassica rapa var. rosularis L.), nitrate 
reductase activity was promoted under red LED lighting 
and remarkable NO3 reduction was observed.

4. The correlation between the photosynthetic 
rate and NO3 contents in all plants confirm the 
significant interrelation between photosynthesis and 
NO3 metabolism; however, the differential response of 
the vegetables species to the applied lighting was also 
indicated. 

5. Further comprehensive research is necessary 
to evaluate species and variety specific effects of the red 
light treatment on nitrate content reduction in different 
green vegetables. 
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LED apšvietimo taikymas prieš derliaus nuėmimą,                     
siekiant sumažinti nitratų kiekį žalumyninėse daržovėse
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Santrauka 
Salotinė sultenė (Valerianella locusta L. ‘Vit’), trispalvis burnotis (Amaranthus chlorostachys Willd. ‘Red Army’) 
ir skrotelinis kopūstas (Brassica rapa var. rosularis L. ‘Rozetto F1’), išauginti silpno natūralaus apšvietimo 
sąlygomis šiltnamyje, 1–7 dienas prieš derliaus nuėmimą buvo papildomai apšviesti 638 nm bangos ilgio raudoną 
šviesą skleidžiančių diodų (LED) šviesa. Siekiant išsamiai įvertinti nitratų metabolizmo valdymo galimybes 
žalumyninėse daržovėse, analizuotas taikyto apšvietimo poveikis nitratų (NO3), nitritų (NO2), redukuojančių 
fermentų aktyvumui ir augalo fotosintetiniam aktyvumui įvairių veislių daržovėse. NO3, NO2, suminis baltymų kiekis 
ir redukuojančių fermentų aktyvumas priklausė nuo augalo rūšies, apšvietimo trukmės ir jų sąveikos. Reikšmingas 
NO3 kieko sumažėjimas ir reduktazės aktyvumo padidėjimas nustatytas po trijų dienų trukmės šviesos poveikio. 
Po apšvietimo buvo nustatytas reikšmingas NO2 ir suminio baltymų kiekio padidėjimas salotinėse sultenėse ir 
trispalviuose burnočiuose. Skroteliniuose kopūstuose ir salotinėse sultenėse nustatyta vidutinė koreliacija tarp 
fotosintezės intensyvumo ir NO3 kiekio. Burnočiuose tarp šių rodiklių nustatyta neigiama neesminė koreliacija. 
Trumpalaikis apšvietimas raudona LED šviesa prieš derliaus nuėmimą gali būti taikomas kaip efektyvus būdas 
sumažinti nitratų kiekį žalumyninėse daržovėse, išaugintose silpno natūralaus apšvietimo sąlygomis. Tyrimo 
rezultatai patvirtina reikšmingą ryšį tarp augalo fotosintezės bei nitratų apykaitos ir kartu jautrią bei nevienodą 
skirtingų augalų rūšių fiziologinę reakciją į taikomą apšvietimą. 

Reikšminiai žodžiai: baltymai, fotosintezė, nitratai, nitratų reduktazė, nitritų reduktazė, šviesą skleidžiantys diodai. 
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